NCO-JSON: A Flexible, Complete JavaScript Object Notation for
netCDF

Charles Zender!

!University of California Irvine

November 24, 2022

Abstract

JavaScript Object Notation (JSON) is an increasingly popular text format for data exchange. netCDF encapsulates the
Common Data Model (CDM) and a binary format for machine-independent and network-transparent storage of scientific data
and metadata. Previous netCDF-to-JSON translators have been custom solutions with incomplete features, or based on more
complex formats than the CDM. Here we describe a flexible JSON format that describes any classic or extended format netCDF
dataset. This format, called NCO-JSON, expresses the richness of the CDM and increases interoperability between web services
and netCDF data. NCO-JSON requires no reserved keywords and so is completely compatible with all netCDF datasets. It
allows for selectable levels of fidelity to the original data and metadata. The most concise and human-legible form of NCO-JSON
is also lossy. By design it distinguishes only the three atomic JSON datatypes (float, string, and int). This suffices for many
purposes yet cannot guarantee bit-for-bit reproducibility of many netCDF datatypes, especially in round-trip translations.
NCO-JSON uses a more complex object notation to encode the additional type information required to reproduce netCDF
datasets with full fidelity. We present the rules and design of the NCO-JSON format, show results with real-world datasests,

quantify the space advantages vs. alternate formats (both JSON and XML), and discuss corner cases and possible extensions.

1/23/2019 AGU - iPosterSessions.com

IN31B-30: NCO-JSON: A Flexible, Complete
JavaScript Object Notation for netCDF

IM318-30; MCO-JS0MN: A Flesible, Complete lavaSoript Obgect Motation for metCDF
P B T
Dammemmema Daes 1 an= e e Sammin Lanem emn o ol S

Simply Complsia D0 Classic reiC0F Ectanded Fazicducib biy

ma —famm e
.) P
- [=
e RO e R mam —a_ e e
—_——= el 5
S —laam v ama e . o i i
" - =

Trede-atts Among &SC1 retiC OF Formais

Strengths & Weaknasses of
ASCI netCDF Formats

Strengths Weaknesses

Charles S. Zender

Departments of Earth System Science and Computer Science, University of California, Irvine

PRESENTED AT:

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true

1/20

1/23/2019 AGU - iPosterSessions.com

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 2/20

1/23/2019 AGU - iPosterSessions.com

SIMPLY COMPLETE

JavaScript Object Notation (JSON) is a widely used text format for data exchange. Previous netCDF-to-JSON translators were
incomplete or overly complex. Here we describe NCO-JSON, a flexible JSON format that describes any classic or extended format
netCDF dataset. NCO-JSON expresses the richness of the Common Data Model and increases interoperability between web services
and netCDF data.

NCO-JSON is designed to be complete, reproducible, and legible. It looks...like JSON:

ncks --json -v one in.nc
{
"variables": {
"one": {
"type": "float",
"attributes": {
"long name": "one"
by
"data": 1.0

groups, dimensions, variables, shape, attributes, type, types,
data) to represent netCDF. These types give access to the complete netCDF namespace, so identifiers are not
limited.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true

3/20

1/23/2019 AGU - iPosterSessions.com

NETCDF CLASSIC

NCO-JSON represents a netCDF classic dataset as a dimensions list followed by a variables list. Each variable object must
contain a t ype object and may contain an attributes list and a single data object. By default NCO-JSON formats metadata in
the most legible and simple JSON syntax. This only differentiates between integers, floating point numbers, and strings:

> ncks --json -v one in.nc
{
"variables": {
"one": {
"type": "float",

"attributes": {
"long name": "one"
by

"data": 1.0

Multidimensional arrays must include a shape object that orders the relevant dimensions (from the dimensions
object) before the data object. By default NCO-JSON prints multidimensional arrays with compound brackets that
indicate the beginnings and ends of hyperslabs in each dimension:

ncks -C -H --jsn_fmt=0 -v two dmn rec var in.nc

"dimensions": {
"lev": 3,
"time": 10
}I
"variables": {
"two dmn rec var": {
"shape": ["time", "lev"],
"type": "float",

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 4/20

1/23/2019 AGU - iPosterSessions.com

"data": [[1.0, 2.0, 3.0], [1.0, 2.10, 3.0], [1.0, 2.20, 3.0], [1.0, 2.30, 3.0],
(.o, 2.40, 3.0J1, (1.0, 2.50, 3.0], [1.0, 2.60, 3.0], [1.0, 2.70, 3.0], [1.0, 2.80,
3.0], [1.0, 2.90, 3.0]]

Adding 4 to any format level unrolls multi-dimensional arrays by removing compound brackets:

> ncks -C -H --jsn_fmt=4 -v two dmn rec var in.nc
{
"dimensions": {
"lev": 3,
"time": 10
I
"variables": {
"two_dmn_rec var": {
"shape": ["time", "lev"],
"type": "float",

"data": (1.0, 2.10, 3.0, 1.0, 2.20, 3.0, 1.0, 2.30, 3.0, 1.0, 2.40, 3.0, 1.0, 2.50,
3.0, 1.0, 2.60, 3.0, 1.0, 2.70, 3.0, 1.0, 2.80, 3.0, 1.0, 2.90, 3.0, 1.0, 2.90, 3.0]

Compound brackets are probably more legible, and unrolled arrays are more compact. Both formats are equally valid JSON.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 5/20

1/23/2019 AGU - iPosterSessions.com

NETCDF EXTENDED

NCO-JSON supports the Extended Common Data Model including user-defined types and hierarchical groups as shown in the
following examples. We begin with Enumerated Types:

ncks --json enum.nc
{
"types": {
"enum ubyte t": ["Clear":0, "Cumulonimbus":1, "Stratus":2, "Missing":128],
}
"dimensions": {
"lon": 4
b
"variables": {

"eld flg": |
"shape": ["lon"],
"type": "enum ubyte t",
"attributes": {

" FillValue": Missing
}s

"data": ["Stratus", "Missing", "Cumulonimbus", "Clear"]

Next we show Variable Length Arrays (vlens):

ncks --json vlen.nc
{
"types": {
"int (*)" : "vlen int t",

}I

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 6/20

1/23/2019 AGU - iPosterSessions.com

"dimensions": {

"lat": 2,

3y
"variables": {

"vlen_int 1D": {
"shape": ["lat"],
"type": "vlen int t",
"attributes": {

" Fillvalue": [-999]
1

"data": [[17, 18, 19], [1, 2, 3, 4, 5, 6, 7, -2147483647, 9, -2147483647]]

Finally we show Groups:

ncks --json grp.nc

"groups": {

"gl": |
"variables": {
"glvl": |

"type": "int"

"data": 1

}l
llg2": {
"variables": {

"g2v1": {

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 7/20

1/23/2019 AGU - iPosterSessions.com

"type": "int"

"data": 2

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 8/20

1/23/2019

AGU - iPosterSessions.com

REPRODUCIBILITY

These NCO commands produce NCO-JSON output in order of increasing reproducibility:

ncks

ncks

ncks

ncks

—--json # Default (i.e., most legible)
--jsn_fmt=0 # Same as above
--jsn_fmt=1 # Legible+Pedantic

--jsn_fmt=2 # Always pedantic

--Jjsn_fmt=0

"attributes": {

"byte att": [0, 1, 2, 127, -128, -127, -2, -1],

"char att": "Sentence one.\nSentence two.\n",

"short att": 37,

"int att": 73,

"float att": [70.010, 69.0010, 68.010, 67.010],

"double att": [70.010, 69.0010, 68.010, 67.0100010],

"ubyte att": [0, 1, 2, 127, 128, 254, 255, 0],

"ushort att": 37,

"uint att": 73,

"inted4 att": 9223372036854775807,

"uint64 att": 18446744073709551615,

"string att": "Hello, World"

by

The default formatting is the most legible, yet is ambiguous about which specific netCDF atomic type underlies the data.
This ambiguity must be resolved to preserve exact reproducibility of the original data type under round-trip translations.
NCO-JSON therefore offers formats that are more pedantic because they turn each attribute into an object that

expliciltyly includes its netCDF atomic type:

> ncks --jsn_fmt=2 -v one in.nc

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true

9/20

1/23/2019 AGU - iPosterSessions.com

"variables": {
"one": {
"type": "float",

"attributes": {

"long name": { "type": "char", "data": "one"}

by

"data": 1.0

The "Legible+Pedantic" mode outputs attributes of three netCDF atomic types (int, float, char) withoutany explicit
explicit t ype object because these three types map 1-to-1 to native JSON types. In this mode all other netCDF atomic types
(short, double, string, unsigned byte, ...)are output with explicit type information. The idea here is that JSON
is often used to convey metadata for which the subtle differences between the atomic types makes no difference, so only use extra
fomatting for non-default types:

ncks --jsn_fmt=1 -v att var in.nc
"att var": {

"dims": ["time"],

"type": "float",

"attributes": {
"byte att": { "type": "byte", "data": [0, 1, 2, 127, -128, -127, -2, -11},
"char att": "Sentence one.\nSentence two.\n",
"short att": { "type": "short", "data": 37},

"int att": 73,

"float att": [73.0, 72.0, 71.0, 70.010, 69.0010, 68.010, 67.010],

"double att": { "type": "double", "data": [73.0, 72.0, 71.0, 70.010, 69.0010,
68.010, 67.01000107]}

} 4

"data": [10.0, 10.10, 10.20, 10.30, 10.40101, 10.50, 10.60, 10.70, 10.80, 10.990]

That is more legible than fully pedantic formatting that includes type objects for every attribute and is therefore fully reproducible:

> ncks --jsn_fmt=2 -v att var in.nc

"attributes": {
"byte att": { "type": "byte", "data": [0, 1, 2, 127, -128, -127, -2, -11},
"char att": { "type": "char", "data": "Sentence one.\nSentence two.\n"},

"short att": { "type": "short", "data": 37},

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true

10/20

1/23/2019 AGU - iPosterSessions.com

"int att": { "type": "int", "data": 73},

"float att": { "type": "float", "data": [70.010, 69.0010, 68.010, 67.010]},
"double att": { "type": "double", "data": [70.010, 69.0010, 68.010, 67.0100010]1},
"ubyte att": { "type": "ubyte", "data": [0, 1, 2, 127, 128, 254, 255, 0]},
"ushort att": { "type": "ushort", "data": 37},

"uint att": { "type": "uinté4", "data": 73},

"int64 att": { "type": "int64", "data": 9223372036854775807},

"uint64 att": { "type": "uinte64", "data": 18446744073709551615},

"string att": { "type": "string", "data": "Hello, World"}

}I

Since fully pedantic mode takes more space and is less legible, use it when reproducibility is a paramount concern, i.e., when it may
be important to reconstruct the original dataset during a round-trip of netCDF->JSON->netCDF.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 11/20

1/23/2019 AGU - iPosterSessions.com

COMPARE TO CDL, XML, HDF5-JSON

netCDF has long supported two ASCII data formats, the Common Data Language (CDL), and the netCDF Markup Language
(NcML), an XML dialect. In addition, HDF5 has a complete JSON dialect that also works for netCDF4 data. Below are dumps of
the same file in CDL, XML, and HDF5-JSON.
First, CDL provides a complete netCDF representation that is also legible:
ncks -v one in.nc
netcdf in {
variables:
float one ;
one:long name = "one" ;
data:
one = 1 ;
} // group /
The same file expressed in NcML is much more opaque to humans:
ncks --xml -v one in.nc

<?xml version="1.0" encoding="UTF-8"?>

<ncml:netcdfxmlns:ncml="http://www.unidata.ucar.edu/ namespaces/netcdf/ncml-2.2"
location="file:in.nc">

<ncml:variable name="one" type="float" shape="">
<ncml:attribute name="long name" separator="*" value="one" />
<ncml:values>1.</ncml:values>
</ncml:variable>
</ncml:netcdf>
As a dialect of XML, NcML is supported by existing cyberinfrastructure, e.g., THREDDS and OPeNDAP.

Third, HDF5-JSON represents the full HDF5 data model (a superset of netCDF) that includes object references as
UUIDs. HDF5-JSON is necessarily more complex and verbose than NCO-JSON.

jelenak@thg:~$ h5tojson one.nc

"apiVersion": "1.1.1",

" "o

datasets": {

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 12/20

1/23/2019 AGU - iPosterSessions.com

"f1d21bba-86e3-11e8-83df-760060ca3401": {
"alias": [
"/one"

I8

"attributes": [

{

"name": "long_name",

"shape": {
"class": "H5S SCALAR"

15

"type": {
"charSet": "HST CSET_ ASCII",
"class": "HST_STRING",
"length": 3,
"strPad": "H5T STR NULLPAD"

15

non "

"value": "one

I

"creationProperties": {
"allocTime": "HSD ALLOC TIME LATE",
"fillTime": "HSD FILL TIME IFSET",
"fillValue": 9.969209968386869¢+36,
"layout": {

"class": "HSD_CONTIGUOUS"

H

"shape": {

"class": "H5S_SCALAR"

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 13/20

1/23/2019 AGU - iPosterSessions.com

thpcvl: {
"base": "HST IEEE F32LE",

"class": "H5T FLOAT"

}s
"value": 1.0
1
J
15
"groups": {

"f1dObac6-86e3-11e8-b54d-760060ca3401": {

"alias": [

nm

I8

"attributes": [

"name": " NCProperties",

"shape": {

"class": "H5S SCALAR"

"type": |
"charSet": "HST CSET_ ASCII",
"class": "H5T STRING",
"length": 57,
"strPad": "HST_STR_NULLPAD"
15

"value": "version=1|netcdflibversion=4.4.1.1|hdf5libversion=1.10.2"

I

"links": [

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 14/20

1/23/2019 AGU - iPosterSessions.com

"class": "HSL TYPE HARD",

"collection": "datasets",

"id": "f1d21bba-86e3-11e8-83df-760060ca3401",

"title": "one"

-~

"root": "f1dObac6-86e3-11e8-b54d-760060ca3401"

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true

15/20

1/23/2019 AGU - iPosterSessions.com

TRADE-OFFS AMONG ASCII NETCDF FORMATS

Strengths & Weaknesses of
ASCIl netCDF Formats

-
CDL |Legible, Complete

NcML |XML, THREDDS, netCDF4 gaps
OPeNDAP Verbose

JSON |JSON, Legible, ?7?°7?
(OPeNDAP)

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 16/20

1/23/2019 AGU - iPosterSessions.com

STATUS AND FUTURE

NCO-JSON is a concise JSON dialect that can completely reproduce netCDF datasets. Multiple independent software projects have
adopted the NCO-JSON dialect to represent netCDF-conforming datasets. These include NCO, ERDDAP, CF-JSON, and STAR-
JSON. An OPeNDAP implementation is clearly feasible, given its recent support for COV-JSON.

To our knowledge, no software yet ingests NCO-JSON and produces netCDF. However, NCO-JSON is designed and ordered to
make parsing it easy. A mechanism to define record dimensions is under consideration.

A manuscript that formally describes NCO-JSON is in preparation. We welcome your comments.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 17/20

1/23/2019 AGU - iPosterSessions.com

DISCLOSURES

We are indebted to Chris Barker and Pedro Vicent-Nunes for stimulating discussions of how to make this JSON format more
economic, readable, and interoperable. Bob Simons contributed helpful corner case examples. Supported by DOE ACME DE-
SC0012998, DOE ARPA-E DE-AR0000594, NASA ACCESS NNX14AHS55A, and NSF ICER AGS-1541031. This research was
supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research. This material is based upon work supported by the National Science
Foundation under Grant AGS-1541031.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 18/20

1/23/2019 AGU - iPosterSessions.com

ABSTRACT

JavaScript Object Notation (JSON) is an increasingly popular text format for data exchange. netCDF encapsulates the Common
Data Model (CDM) and a binary format for machine-independent and network-transparent storage of scientific data and metadata.
Previous netCDF-to-JSON translators have been custom solutions with incomplete features, or based on more complex formats than
the CDM. Here we describe a flexible JSON format that describes any classic or extended format netCDF dataset. This format,
called NCO-JSON, expresses the richness of the CDM and increases interoperability between web services and netCDF data. NCO-
JSON requires no reserved keywords and so is completely compatible with all netCDF datasets. It allows for selectable levels of
fidelity to the original data and metadata. The most concise and human-legible form of NCO-JSON is also lossy. By design it
distinguishes only the three atomic JSON datatypes (float, string, and int). This suffices for many purposes yet cannot guarantee bit-
for-bit reproducibility of many netCDF datatypes, especially in round-trip translations. NCO-JSON uses a more complex object
notation to encode the additional type information required to reproduce netCDF datasets with full fidelity. We present the rules and
design of the NCO-JSON format, show results with real-world datasests, quantify the space advantages vs. alternate formats (both
JSON and XML), and discuss corner cases and possible extensions.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 19/20

1/23/2019 AGU - iPosterSessions.com

REFERENCES

Bray, T. (2013), JavaScript Object Notation (JSON) documentation, http://www.json.org.

Caron, J. (2013), NetCDF Markup Language (NcML) documentation, http://www.unidata.ucar.edu/software/thredds/current/netcdf-
java/ncml/#NcML22.

Caron, J. (2014), Unidata’s Common Data Model version 4, http://www.unidata.ucar.edu/software/thredds/current/netcdf-
java/CDM.

HDF Group (2015), HDF5: API Specification Reference Manual, The HDF Group, Champaign-Urbana, IL.
Simons, B. (2017), ERDDAP (Environmental Research Division Data Access Program), https://coastwatch.pfeg.noaa.gov/erddap

Zender, C. S. (2008), Analysis of Self-describing Gridded Geoscience Data with netCDF Operators (NCO), Environ. Modell.
Softw., 23(10), 1338-1342, doi:10.1016/j.envsoft.2008.03.004.

https://agu2018fallmeeting-agu.ipostersessions.com/Default.aspx ?s=5F-D1-48-71-CF-02-B2-DA-F3-CE-43-6C-02-2E-AB-OE&pdfprint=true&guestview=true 20/20

