Rapid automatic clean-up toolkit for large corrupted tidal datasets

Vamsi Krishna Sridharan!

University of California Santa Cruz

November 26, 2022

Abstract

Tides are critical to coastal and oceanic processes. While tidal data are available readily, they are often corrupted by various
sources of error. An automated, fast MATLAB toolbox is developed to clean-up tidal timeseries data from estuarine and
oceanic locations corrupted by errors. This toolbox will immensely speed up delivery of quality-controlled tidal data. It will
also reduce errors in quality control, which typically involves several manual tasks. The toolbox corrects poorly interpolated
and noisy data, erroneous outliers, and instrumentation bias such as spurious jumps, drifts, spikes, and modulations in the true
signal. Signal clean-up involves multiple stages. First, thresholds are imposed on higher order temporal derivatives of the signal
to remove gross interpolations and noise saturated signal chunks, followed by a moving median threshold to remove outliers.
Then the surviving signal is filtered into tidal, subtidal and long-period components, and the long-period component is subject
to a maximal overlap discrete wavelet transformation, in which the transform coefficients corresponding to multi-scale edge
features are removed. Subsequently, local information in the subtidal and tidal components is compared relative to the whole
signal to correct spurious amplitude modulations and sudden biases. Consequently, these components are added to recover
the uncorrupted signal, and large data gaps are filled with short term harmonic reconstruction. For estuarine locations, the
correlation in the spectrogram between two nearby stations is initially used to quantify and remove river influence in the signal.

Applications to datasets at multiple global locations demonstrate the value of the toolbox.
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