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Abstract

We evaluate the mass balance of the Russia High Arctic Archipelago between April 2002 and August 2016 employing independent
estimates obtained using time-variable gravity from the NASA/DLR GRACE mission and satellite altimetry data from the
NASA ICESat and the ESA CryoSat-2 missions. We present a new algorithm designed to derive ice elevation change maps
using altimetry data and we evaluate its performance over the region of interest. Gravimetric and Altimetric observations
provide consistent results and show that over the period under analysis, glaciers in the region have lost mass at a rate of 15
+/-7 Gt/yr corresponding to a sea level contribution of 0.039 mm/yr. The mass loss increased after 2010, reaching a maximum
rate of 25 4+ /-7 Gt/yr between 2010 and 2016. The increased mass loss was associated with high thinning rates at low elevations
(below 500 m), with marine-terminating glaciers thinning significantly faster than those terminating on land. The mass loss
process was associated to a shift in climatic conditions in the region due to enhanced atmospheric and ocean temperatures and
decreased sea ice concentrations. These results indicate that glaciers in the region are sensitive to variations of both climatic

mass balance and ice discharge.
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Abstract:
We evaluate the mass balance of the Russian High Arctic Archipelagoes (RHA) between April 2002 and August 2016 employing independent estimates obtained using time-variable gravity from the NASA/DLR GRACE mission and satellite altimetry data
from the NASA ICESat and the ESA CryoSat-2 missions. Gravimetric and altimetric observations provide consistent results and show that over the period under analysis, glaciers in the region have lost mass at a rate of 15.7 = 7 Gt/yr corresponding to a
sea level contribution of 0.039 mm/yr. The mass loss increased after 2010, reaching a maximum rate of 24.6 = 7 Gt/yr between 2010 and 2016. The increased mass loss was associated with high thinning rates at low elevations (below 500 m), with
marine-terminating glaciers thinning significantly faster than those terminating on land. The mass loss process was associated with a shift in climatic conditions in the region due to enhanced atmospheric and ocean temperatures. These results indicate
that glaciers in the region are sensitive to variations of both climatic mass balance and ice discharge.
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