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Abstract

Due to its inherent ability to estimate the background error covariances, an ensemble Kalman filter (EnKF) is thought to be a

practical approach to the strongly coupled data assimilation problems, where an entire coupled model state is estimated as if

it was a single integrated system. However, increased complexity and the multiple time scale of the coupled system aggravate

the rank-deficiency and spurious correlation problems caused by limited ensemble size available for the analysis. To alleviate

these problems, a distance-independent localization method to systematically select the observations to be assimilated into

each model variable has been developed and successfully tested with a nine-variable coupled model with slow and fast modes.

This method, called correlation-cutoff method, utilizes the mean squared ensemble error correlation between each observable

and model variable to identify where the cross-update should be used, and we cut off the assimilation of observations when

the squared error correlation becomes small. To implement the method on a more realistic model, we thoroughly investigate

inter-fluid background covariances in an atmosphere-ocean coupled general circulation model where the spatiotemporal scales

of coupled dynamics significantly vary by latitudes and driving processes.
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4. Toy model experiments
The 9-variable model of Peña and Kalnay (2004) mutually couples three Lorenz63

model with different timescales, representing an “Ocean”, a “Tropical atmosphere”, and
an “Extratropical atmosphere”. The model offers a realistic and handy testing
environment for coupled DAmethodologies.

With the correlation-cutoff method, we test partially coupled analysis, where only
tropical atmosphere and ocean observations are mutually assimilated (Figure 1). We
achieved better analysis accuracy than both weakly coupled and fully coupled analysis,
especially with smaller ensembles (Figure 2).

5. Global model experiments
We employ a global atmosphere-ocean coupled model (FOAM; Jacob 1997) and

observation system simulation experiments (OSSEs) for the investigation of coupled
background error correlations. The background ensemble correlations of a 64-member, weakly
coupled LETKF cycle is examined as a proxy to the unknown background error correlations of
the coupled system.

Figure 3 shows examples of temporary aggregated background error correlation
(represented by an ensemble perturbations) between the atmosphere and the ocean. Panel (a)
shows that a hypothetical surface air observation can constrain the subsurface ocean
temperature. Panel (b) shows that a hypothetical surface wind observation can constrain the
subsurface current below, which are negatively correlated (explained by linearized Ekman
layer dynamics). Such background ensemble correlations between atmosphere and ocean
surface variables are globally found.

We use a small neural network to generalize the complex ensemble correlation structure as
a function of distance, observation type, analysis variable type, etc. The network succeeded to
reproduce the background ensemble correlations of the global system, including the coupled
ones between the atmosphere and the ocean (Figure 4). Since the neural networks are compact
and fast, we will be able to use them as an optimal localization function for strongly coupled
ensemble Kalman filters (correlation-cutoff method).
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1. Background
By using coupled models for the background state estimate, coupled data assimilation

tries to provide more consistent and accurate state estimate of a coupled system (e.g.,
atmosphere-ocean system). We can broadly classify coupled DA methodologies into weakly
coupled DA (coupled background, uncoupled update) and strongly coupled DA (coupled
background and update) (Penny et al., 2017). Since strongly coupled DA tries to solve a
larger problem, strongly coupled ensemble Kalman filters often suffer from the rank-
deficiency problem and need to be localized appropriately.
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2. Theory
With sequential assimilation of observations, the relative reduction of the analysis error

variance by assimilation of each observation can be written as a product of two quantities
(Yoshida and Kalnay, 2018):

a) relative accuracy of the observation to the background

b) squared background error correlation between the analyzed and observed variables

Therefore, we should mutually assimilate observations (i.e., strongly coupled DA) only
between pairs of variables that have well-correlated background errors.
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3. “Correlation‐cutoff method” procedure
(i) Run an EnKF analysis cycle in any form (“offline cycle”)

(ii) Estimate the strength of background error correlation between each pair of observation
and analysis variables from the mean squared background ensemble correlation of (i)

(iii) Conduct strongly coupled analysis, coupling only the pairs of variables with large mean
squared background ensemble correlation

Figure 1: Covariance localization patterns tested for the toy model. Shading
indicates allowed background error covariances between components. The
lower right insertion shows the mean squared background ensemble correlation
obtained by procedure (ii), with a 10-member, fully coupled LETKF, which
indicates that the ENSO-coupling localization is optimal.

Mean squared background ensemble
correlation obtained by procedure (ii)

(correlation‐cutoff)

Figure 2: Temporal mean analysis root-mean-square error (RMSE) for each toy
model analysis experiment. The shading indicates the covariance localization
pattern used. Each panel is the result of experiments with (a) 4, (b) 6, and (c) 10
members. Note that the filter diverged in the 4-member Full experiment.
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Figure 3: Temporarily aggregated background ensemble correlation of (a) a hypothetical surface air
temperature observation at the equator with the ocean temperature field (and the air temperature field
itself) (b) a hypothetical surface meridional wind observation to the zonal current field (and the
meridional wind field itself). Shading and contours show temporal mean and temporal root-mean-
squared respectively. The latter includes flow-dependent portion.

Figure 4: Background ensemble correlation to a hypothetical observation of surface meridional wind
at 45S (green plus sign) reproduced by the neural network. The upper half shows the background
ensemble correlation field of meridional wind (atmosphere), as a function of analysis model level and
horizontal distance. The lower half shows the background ensemble correlation field of zonal current
(ocean), as a function of analysis model level and horizontal distance. Compare with Figure 3b.
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