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Abstract

The climatology of upwelling in the tropical tropopause layer (TTL) in current climate simulations and in future climate
projections is examined using models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Large
intermodel differences in upwelling in the TTL appear in the current climate simulations. Model composite analysis and
upwelling diagnosis based on the zonal momentum budget indicate that the intermodel differences in upwelling are controlled
by meridional eddy momentum fluxes associated with tropical planetary waves and midlatitude synoptic waves. Future climate
simulations indicate that upwelling changes in the TTL are significantly correlated with the upwelling in current climate
simulations. Models with strong (weak) TTL upwelling in the current climate simulations tend to project strong (weak)
upwelling enhancement in the future climate. The intermodel differences in the upwelling change arise from the same dynamical
factors as the current climate cases. The contribution of sea surface temperature (SST) to the intermodel upwelling differences
is examined by SST-prescribed simulations in CMIP5. The contribution of intermodel SST differences to the upwelling is
smaller than that of intrinsic atmospheric intermodel differences. The significant correlation of the tropical upwelling between

the current climate simulations and the future changes appears to be independent of the target latitude range.
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Introduction

€ Upwelling in the tropical tropopause layer (TTL; 100 hPa in this study) in
current climate (1979-2003 in historical simulations) and future climate (2075-
2099 in RCP8.5 simulations) is examined using models participated in Coupled
Model Intercomparison Project phase 5 (CMIP5).

€ To assess contributions of intermodel SST difference, AMIP (observed SST in
current climate) and AMIP4K (prescribed SST 4K warmer than AMIP SST)
simulations in CMIP5 are compared with historical and RCP8.5 simulations.

€ Upwelling diagnosis is performed based on Haynes’ (1991) “downward control
principle.”

€ Composite analysis is also performed based on upwelling magnitude grouping.

Climatologies in current climate
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Figure 2. Scatter plots of annual mean climatology of 100 hPa residual mean vertical velocity averaged over the tropics (15°S-
15°N) in (a) the historical simulations and the future changes (RCP8.5) and 100 hPa zonal mean vertical velocity in (b) historical
and AMIP and in (c) difference in RCP8.5 and historical and difference in AMIP4K and AMIP .

— Upwelling diagnosis
Latitudinal mean upwelling is diagnosed by vertical integration of meridional mass outflow along constant zonal mean angular
momentum lines. In steady state, meridional mass out flow is balanced with zonal forcing, and contributions of each forcing to the

upwelling can be diagnosed separately. EP flux: F = (0, Fy +F,, Fpu + Fyy)
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Key findings
€ Models with strong TTL upwelling in the current climate tend
to project strong TTL upwelling enhancement in future climate.

€ Intermodel differences in the upwelling are controlled mainly
by atmospheric model uncertainty rather than SST uncertainty.

€ Tropical planetary waves and midlatitude synoptic waves are
main drivers for intermodel differences in the upwelling.

Yoshida, K., R. Mizuta, and O. Arakawa: Intermodel differences in upwelling
In the tropical tropopause layer among CMIP5 models, JGR, accepted.

Upwelling diagnosis based on “downward control principle”
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Figure 7. Statistics of the annual mean climatology of tropical mean upwelling at 100 hPa with various
latitude ranges in historical simulations and future changes
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Figure 3. Scatter plots of annual mean climatologies (1979-2003) averaged over the tropics (15°S-15°N) between diagnosed
upwelling and residual mean vertical velocity.
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Figure 6. Annual mean climatology (1979-2003) of departure from zonal mean in (vectors)
horizontal wind (m s1) and (colors) geopotential height at 100 hPa for (a) weak models and (c)
strong models and (b, d) their future changes.
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Figure 4. Annual mean climatology (1979-2003) of (a-h) Eliassen—Palm (EP) flux (vector) and EP flux divergence (color) and (i-1) zonal
mean zonal wind in (a, e, 1) weak models, (b, f, j) middle models, (c, g, k) strong models, and (d, h, I) difference between strong and weak
models. EP flux and EP flux divergence are divided into (top) stationary waves and (middle) transient waves.

Tropical stationary waves and midlatitude synoptic waves are different among groups.
Westerly in the tropical upper troposphere may relate tropical wave activity.
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Figure 5. Same as Figure 4, but for future climate change calculated as
differences between the RCP8.5 and historical simulations.
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Similarity of the upwelling and related wave forcing between the current climate and future
change may be explained by upward shift of tropospheric circulation (e.g. Oberlander-Hayn

et al., GRL, 2016), which retains individual model features in the current climate.
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