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Abstract

To date, actively flowing lava has only been observed on Earth and on Jupiter’s moon Io. This lack of observation means that
for the vast majority of volcanic systems in the Solar System, solidified lava-flow morphologies are used to infer important
information about eruption and emplacement parameters. These include: lava supply rate, lava composition, lava rheology, and
determination of laminar or turbulent emplacement regimes. Commonly used models that relate simple lava flow morphologic
properties (e.g., width, thickness, length) to emplacement characteristics are based on assumptions that are readily misinter-
preted. For example, the simplifying assumption of fully turbulent lava flow allows for a thermally mixed flow interior, but
ignores the lava properties that naturally work to suppress full turbulence (such as thermal boundary layers encasing active lava
flows, and a temperature-dependent lava rheology). However, full turbulence in silicate lava flows erupted into environments
that have temperatures lower than the lava solidification temperature requires a rare combination of characteristics. We model
Bingham Plastic, Newtonian, and Herschel-Bulkley fluids in rectangular channels, tubes, and sheets with computational fluid
dynamics (COMSOL) software to obtain flow solutions and general flow rate equations and compare them to field measure-
ments of volcanic velocity and flow rates. We present these as more realistic alternatives to older simpler rate-from-morphology
models. We find that several lava rheology properties work together to delay the onset of turbulence as compared to isothermal
Newtonian materials, and that while turbulent lavas flows certainly exist, they are not as prevalent as the published literature
might indicate. Results obtained from models that assume full turbulence in silicate flows on the terrestrial planets should

therefore be interpreted cautiously.
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Abstract

To date, actively flowing lava has only been observed on Earth and on Jupiter’s
moon lo. This lack of observation means that for the vast majority of volcanic
systems in the Solar System, solidified lava-flow morphologies are used to infer
important information about eruption and emplacement parameters. These
include: lava supply rate, lava composition, lava rheology, and determination of
laminar or turbulent emplacement regimes. Commonly used models that relate
simple lava flow morphologic properties (e.g., width, thickness, length) to
emplacement characteristics are based on assumptions that are readily
misinterpreted. For example, the simplifying assumption of fully turbulent lava
flow allows for a thermally mixed flow interior, but ignores the lava properties
that naturally work to suppress full turbulence (such as thermal boundary layers
encasing active lava flows, and a temperature-dependent lava rheology).
However, full turbulence in silicate lava flows erupted into environments that
have temperatures lower than the lava solidification temperature requires a rare
combination of characteristics. We model Bingham Plastic, Newtonian, and
Herschel-Bulkley fluids in rectangular channels, tubes, and sheets with
computational fluid dynamics (COMSOL) software to obtain flow solutions and
general flow rate equations and compare them to field measurements of volcanic
velocity and flow rates. We present these as more realistic altematives to older
simpler rate-from-morphology models. We find that several lava rheology
properties work together to delay the onset of turbulence as compared to
isothermal Newtonian materials, and that while turbulent lavas flows certainly
exist, they are not as prevalent as the published literature might indicate. Results
obtained from models that assume full turbulence in silicate flows on the
terrestrial planets should therefore be interpreted cautiously.
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Analytic Flow Rate Models

Hulme model: (Isothermal laminar Bingham A pproximation)

YB — 2 p gWL S inZ 2 Y, = Bingham ).field stress A

) i ) rho = flow density
— T his appremmatlon (.e.g. Hulme, 1976) relies on . g = acceleration of gravity
problematic assumptions and should be replaced with an A T
exact or empirical solution (e.g. Skelland 1967, Deane and 5
Sakimoto, 1997; Burger et al. 2015; and others). theta = slope

Jeffries Equation: (Isothermal laminar Newtonian Approximation)

u= flow velocity

h = flow depth

g = acceleration of gravity

B n rho = density

e This approximation (Jeffries, 1925) should be B= geometry parameter
replaced with the appropriate exact solution. See, for n={tluid viscosity
example, White (2006).
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Isothermal laminar Bingham Flow Examples s

—- N umerous exact and empirical solutions: .
Skelland, 1967, circular tube, parallel plates
Burger et al (2015), and many others: rectangular channel

Deane and Sakimoto (1997) Parabolic Channel
...€tc...

Computational Flow Rate Model Examples

All computational models are done with COMSOL Multiphysics 5.4 (2018) using the
Computational fluid dynamics (CFD) module, the Heat Transter Module, and (where
applicable) the Matenal Library Module. See www.comsol.com for a more complete v
description of the computational capabilities of each module and the base multiphysics

package.

Isothermal laminar Newtonian

flow in a rectangular channel: e parabolic velocity profile

e expected turbulence transition -

Isothermal power law thinning

flow in a rectangular channel:  more flow in the boundary 'layels

* slower center velocity
e delayed turbulence transition

Isothermal power law
thickening flow in a rectangular
channel:

* less boundary layer flow
» faster center velocity
e delayed turbulence transition

Isothermal Bingham thinning

flow in a rectangular channel: o substantial fast center plug

 thin boundary layer
e delayed turbulence transition

"'7""3-..,: 1'*“' e L, ,;u:f b i"l"'-i. i -4, ™ ;‘-
"‘; "-.'I...'!' ‘L" "'-|. 'l'}';‘- '

= :E_
Cpmpute er ored m 'c ﬂ:ew p‘ﬁ)pe‘lttles

ftgmlavaﬂewden h - ang vidth. .‘s‘i\

Exporting Models to Planetary Flows

* Planetary volcanology approach inverts the terrestrial approach:

- Planetary ... often predicting flow properties from flow dimensions and shape rather
than flow dimensions from flow properties.

* Planetary flows do not have geochemistry or geothermometry constraints that
may be available for terrestrial flows. Ambient conditions must be considered.

 Computational approaches modeling flows with changed ambient conditions
for planetary flows are expected to yield improved results compared to
exporting vintage terrestrial approximations. Computational approaches can

. yield empirical equations appropriate for specific model/planet conditions.
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D1scuss10n and Conclusions

 The Hulme and Jeffries approximation approaches for estimating planetary flow properties
should be retired, since they are demonstrably unreliable, and we have vastly improved analytic = -
AND computational approaches that yield more tightly constrained and consistent results.

g

he X

* We do not yet adequately understand the effects of temperature-dependent rheology,
composition, and ambient conditions on terrestrial or planetary tlows. So:

—Inferming composition varnations from flow morphology is fraught with pitfalls

—Inferring laminar or turbulent emplacement from flow morphology and multiple
simplifying assumptions has significant potential for incorrect results.

* With current computational tools, we can construct semi-empirical relationships as well as self-
contained model applications that are specific to flow conditions and planetary conditions

—...Increasing our understanding of planetary flow properties AND general lava flow
processes under different ambient conditions..




