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Abstract

Over the past several decades, the Greenland Ice Sheet has been losing mass through a combination of increased surface runoff
and accelerating ice flux to the ocean. Our understanding of the surface component is drawn heavily from satellite observations
and climate models. The MAR (Modele Atmosphere Régional) model is a 3D regional climate model used extensively over
Greenland. Our study focuses on the surface snow and the ice down to 15-meter in depth. A light-weighted surface model for us to
integrate the local observation data and force many simulations is needed. Our goal is to implement a surface-only model, derived
from MAR, as a tool for understanding the glacial surface components, correlations, and MAR biases to improve projections of
surface runoff. This model includes the ability to integrate observations from surface weather stations, translate the data into
a model forcing format, force different simulations with various configurations or datasets, visualize model outputs, find key
correlations between atmospheric drivers and modeled firn densification. In the model development, we extract the surface code
from the original MAR for the simulations initialized and forced with the following snow and atmospheric fields: snow depth,
temperature, density, water volume, and grain size. We then verify that the surface model generates the same outputs as the
full MAR does if fetched with the identical data. The bias is checked with snowpack time-depth plots for multiple sites around
Greenland, including Summit and Swiss Camp. We have found a very small bias when compared to the fully-coupled MAR. We
perform quality control for the data inputs, such as replacing missing data from the station measurements, defining the max
and min for each dataset, filtering out the data outliers by statistics standard deviations. As the result, our model software can
provide multiple simulations in sequential and concurrent mode with user-friendly interfaces, and run robustly. The model’s first
release is currently being deployed over different sites across Greenland to understand the importance of atmospheric forcing

versus snow model biases in projections of future mass loss due to surface melt.
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. . : : From speeding a small portion of code to the simultaneous simulations, fast speed is the high-light of our MAR-L model.
original MAR simulated data with the new station data set.
Interpretation Over the past several decades, the Greenland Ice Sheet has been losing mass through a combination of increased
Quality Control ¢ase L: The station data is measured less surface runoff and accelerating ice flux to the ocean. Our understanding of the surface component is drawn heavily Prove the Reliability of the MAR-L Model
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Z;;:;Zﬂ:g:j;;: ;;7:‘;/';,;71/";1‘01‘/0/15, And N is the total number of values. depth. A light-weighted surface model for us to integrate the local observation data and force many simulations is We studied the snow depth at summit in Greenland in 2004, and the temperatures, by analyzing the data from MAR and MAR-L,
SWdown LWdown Wind Temp. Humid. Pressure Precip. Ph. SWabs Tsurf CId surface components, correlations, and MAR biases to improve projections of surface runoff. This model includes the max snow depth bias is 2.7%, both af the top surface and affecting a small region.
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