Direct prediction of temperature from time-lapse ERT using
Bayesian Evidential Learning : extension to a 4D experiment
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Abstract

The use of geophysical methods to characterize subsurface properties has significantly grown in the last decade. Although
geophysics can bring relevant spatial and temporal information on subsurface processes, the quantitative interpretation and
integration in models remain difficult. Indeed, standard deterministic solutions suffer from (excessive) smoothing and spatially
variable resolution, whereas joint or coupled inversions remain difficult to apply in complex cases. Hermans et al. (2016)
proved using cross-borehole ERT that physical properties distribution could be directly retrieved from data using Bayesian
Evidential Learning (BEL). BEL uses a series of prior models to derive a direct relationship between data and forecast in a
reduced dimension space. This can be challenging when the prediction becomes more complex with higher dimensions. In this
contribution, we extend the work of Hermans et al. (2016) to a full 4D experiment (3D + time). We demonstrate that the shape
and amplitude of the temperature plume can be retrieved, with uncertainty quantification, during a push-pull experiment using
surface ERT. We analyze the robustness of the solution using a synthetic benchmark. The results indicate that the median
of the posterior is very close to the true temperature distribution. The relative error increases at the edge of the temperature
plume where the change of temperature is limited. This is related to the limited resolution of geophysics and the process of
dimension reduction. We also investigate how discrete cosine transform can improve the dimension reduction process without
altering the final prediction. Finally, we show that BEL is able to retrieve the spatio-temporal variability of the plume, while
the smoothness constraint inversion fails to accurately image the corresponding contrast, largely underestimating the amplitude
of the temperature change. BEL is therefore a well-suited framework for the interpretation of 4D geophysical data avoiding the
drawbacks of standard deterministic solutions. Hermans, T., Oware, E., & Caers, J. (2016). Direct prediction of spatially and

temporally varying physical properties from time-lapse electrical resistance data. Water Resources Research, 52, 7262-7283.
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DIRECT PREDICTION OF TEMPERATURE FROM TIME-LAPSE ERT USING BAYESIAN EVIDENTIAL
LEARNING: EXTENSION TO A 4D EXPERIMENT
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to sample the posterior
distribution p(h|d) in the

low dimensional space and
back-transform it to the Compared to standard methods, this approach yields more geologically realistic samples, avoiding smoothing due to

The alluvial aquifer is modeled using 250 sequential
Gaussian simulations based on our prior knowledge of
the site (Table 1). The heat storage experiment is
simulated using HydroGeoSphere for each simulation.

during a heat storage experiment monitored by 3D surface ERT
The framework allows to generate the posterior distribution without any explicit inversion

Storage phase 46 h
Température (°C)
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—— We are planning to apply the method to field data and further investigate the influence of noise on the results
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