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Abstract

The adiabatic invariants (M, J, ®) and the related invariants (M, K, L*) have been es-
tablished as effective coordinate systems for describing radiation belt dynamics at a the-
oretical level, and through numerical techniques, can be paired with in-situ observations
to order phase-space density. To date, methods for numerical techniques to calculate adi-
abatic invariants have focused on empirical models such the Tsyganenko models T'S05,
T96, and T89. In this work, we develop methods based on numerical integration and vari-
able step size iteration for the calculation of adiabatic invariants, applying the method

to the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation
code, with optional coupling to the Rice Convection Model (RCM). By opening the door
to adiabatic invariant modeling with MHD magnetic fields, the opportunity for exploratory
modeling work of radiation belt dynamics is enabled. Calculations performed using LFM
are cross-referenced with the same code applied to the T96 and TS05 Tsyganenko mod-
els evaluated on the LFM grid. Important aspects of the adiabatic invariant calculation
are reviewed and discussed, including (a) sensitivity to magnetic field model used, (b)
differences in the problem between quiet and disturbed geomagnetic states, and (c) the
selection of key parameters, such as the magnetic local time step size for drift shell de-
termination. The rigorous development and documentation of this algorithm addition-
ally acts as preliminary step for future thorough reassessment of in-situ phase-space den-
sity results using alternative magnetic field models.

1 Introduction

The radiation belts of Earth have long been one of the most studied and central
regions of what is now known as Earth’s magnetosphere. High-energy charged particles
trapped in the Earth’s magnetic field follow stable orbits through the dynamical system
of Earth’s ring current. These charged particles are of notable concern to both geosyn-
chronous/GPS satellites traversing the heart of the outer zone radiation belts and low-
earth orbit satellites transiting the South Atlantic Anomaly. Harmful effects include charge
buildup that will eventually result in pulsed discharges (a phenomena known as deep di-
electric charging), and the related circuit interference. Such circuit interference is par-
ticularly dangerous as it may lead to command processors executing arbitrary routines,
such as full-system resets or attitude adjustments (Baker et al., 1994, 1998; Baker, 1998;
Shea & Smart, 1998). In addition, energetic particle interactions may mistrigger onboard
circuit components into overdrawing current and irreversibly damaging the spacecraft’s
electronics. Because these effects may occur more intensely during periods of high ra-
diation belt fluxes, a detailed understanding of the dynamics during such highly active
periods is compelling. As modern infrastructure increasingly depends on such satellites,
it becomes more and more critical to understand and predict the behavior of these high-
energy particles to safeguard missions in these regions.

The specific paths trapped particles follow and how they become altered during ge-
omagnetic storms is determined in part by the global configuration of the Earth’s mag-
netic field. Our knowledge of Earth’s magnetic field, and its variations during geomag-
netic storms, can be quantified using either (a) empirical models capturing the large-scale
configuration of the magnetosphere through fits of spacecraft data to mathematical mod-
els (N. Tsyganenko & Sitnov, 2007; N. Tsyganenko, 1995; N. A. Tsyganenko, 1989), or
(b) based on dynamic, physics-based models of the Earth-Sun interaction, using space-
craft measurements for only the upstream solar wind boundary condition. Empirical mod-
els are typically classified as either internal or external models, where an “external” model
is an additive deviation on top of an “internal” model. Broadly, external models cap-
ture effects from currents in the near-Earth space environment such as the ring current,
tail current, and magnetopause currents (N. Tsyganenko, 2002), while internal models
capture effects due to currents below the Earth’s surface. Examples of internal models
include a standard dipole and the International Geomagnetic Reference Field (Alken et



al., 2021; Langel, 1992). Examples of widely used external models in the modern era in-
clude the Tsyganenko family of models such as TS05, T96, and T89 (N. Tsyganenko &
Sitnov, 2005; N. Tsyganenko, 1995; N. A. Tsyganenko, 1989). Dynamic models based

on magnetohydrodynamics (MHD) driven by an upstream boundary condition in the so-
lar wind are currently at a high high level of maturity, with prominent models in the com-
munity being the Lyon-Fedder-Moberry (LFM) code (Lyon et al., 2004), the Space Weather
Modeling Framework (SWMF) (Téth et al., 2012), the Open Geospace General Circu-
lation Model (OpenGGCM) (Raeder et al., 2008), and the Grid Agnostic MHD for Ex-
tended Research Applications (GAMERA) (Zhang et al., 2019).

The canonical adiabatic invariants of a trapped particle are (M, J, @), derived from
the Hamilton-Jacobi action integrals associated with the three periodic motions which
trapped particles undergo (Haerendel, 1968; Schulz, 1996). The advantage of the adi-
abatic invariant coordinates is that of their nature as an essential state variable with re-
spect to the changing global magnetic field. During a geomagnetic storm, the shape of
the Earth’s magnetic field will change in response to storm-time influences. In turn, the
exact velocity v of trapped particles will change in response to the changed magnetic field.
However, the adiabatic invariant coordinate (M, J, ®) will remain constant provided (a)
no work is done on the particle and (b) the global magnetospheric fields change sufficiently
slowly. The adiabatic invariants are themselves a representation of the particle’s veloc-
ity, being a function of both (v, vy, v,) velocity representation and the instantaneous
magnetic field throughout the drift shell.

The community has widely adopted an alternative form of (M, J, ®), denoted (M, K, L*).
The coordinates (MK, L*) can be calculated directly from (M, J, ®) (and are equivalently
invariant provided no parallel forces exist along the magnetic field line), but provide sev-
eral convenient and desirable properties over their predecessor. We also note that the
first invariant M has a non-relativistic counterpart pu, related by the equation M = ypu,
where + is the Lorentz factor and p is the magnetic moment of the particle. The mag-
netic moment p is an adiabatic invariant only in non-relativistic scenarios.

The second invariants J and K are related through the following equations taken
from Roederer & Zhang (2016),

K:J/(Q\/2m0M):/82 v/ B — B(s) ds. (1)

The primary advantage of K is that it can be computed directly from a field line trace
(depends on B alone), where as calculation of J requires tracking the particle’s exchange
of parallel and perpendicular momentum over a bounce.

The more convenient form of ® is the dimensionless L*, given by

L* = QW[LE/(RE(I)), (2)

where g is the magnetic moment of the Earth and Rg is the radius of the earth. L*

has the desirable property that in a dipole field, a particle found on an L-shell L will have
L* = L. This allows L* to be used as a reference in comparison to L. Subsequently,

the occurrence of particles found on an L-shell L with L* > L or L* < L therefore
indicates that the magnetosphere has deviated from a dipole in such a way that the par-
ticle underwent outwards or inwards adiabatic motion, respectively, as a result of the mag-
netospheric reconfiguration. This is in contrast to the cause necessarily and solely be-

ing due to non-adiabatic transport as a result of work done by wave-particle interactions,
such as betatron/Fermi acceleration (Boyd et al., 2018; Ukhorskiy et al., 2005; Green

& Kivelson, 2004; Ingraham et al., 2001).

With such a coordinate for each particle, the phase space density f(x,p) is equiv-
alent to f(M, K, L*, p1,¢2,p3), where o1, @2, and @3 are the phases associated with each



periodic motion for M, K, and L* respectively. In practice, the phase space distribu-
tion is largely not phase-dependent, so it is accepted to recast f(M, K, L*, o1, @2, ©3)
as the phase-averaged distribution f(M, K, L*) (pedantically, one should more specif-
ically write f(M, K, L*), but this is not entirely standard). The main advantage of the
phase-averaged distribution is that it only has three dimensions compared to the six di-
mensions prior (not counting time). A continued discussion of the adiabatic invariants,
their associated periodic motions, and the methods of computing M, K, and L* can be
found in Section 2 - Algorithms and Methods.

To study the charged particle populations of the radiation belts, particle flux dis-
tributions are measured in-situ by spacecraft instrumentation (e.g. Mauk et al., 2014;
Escoubet et al., 2001). By relating count rates to instrument calibration parameters, the
particle’s momentum, and the spacecraft’s orientation/position, velocity distributions
in the form of f(x,p), f(x,a, W), or f(x,¢,0, W) can be collected. In these expressions,
x is the position in space, where p is the particle relativistic momentum, « is a pitch an-
gle between p and B, W is a particle energy, and ¢/6 are the azimuthal/elevation look
directions. From these base forms of the distribution function, missions studying radi-
ation belt dynamics will convert the distribution function to f(M, K, L*) to aide scien-
tific analysis.

Currently in the radiation belt research community, the conversion of a spacecraft
measured f(x,v) to f(M, K, L*) is done with empirical magnetic field models. Common
codes include LANLStar (Yu et al., 2012), IRBEM (https://prbem.github.io/IRBEM/),
SPENVIS (https://wuw.spenvis.oma.be/), LANLGeoMag (https://github.com/drsteve/
LANLGeoMag) (Henderson et al., 2018), and direct particle tracing methods. Out of all
these tools, only LANLGeoMag supports MHD model output, doing so by letting the
user provide the global magnetic field in an unstructured array as points. Reasons most
tools have not been adapted to MHD magnetic field models include the immediate avail-
ability of empirical models and the difficulties associated with performing the calcula-
tion using MHD magnetic field models. Such difficulties include (a) the more involved
task of looking up B(x) due to non-uniform adapted grids, (b) the computational cost
associated with running MHD simulations, and (c) the storage cost associated with pre-
serving large MHD simulation output. Still, this is a missed opportunity, as the mod-
eling capabilities of MHD simulation offers at the very least complimentary insight with
empirical models for most studies using adiabatic invariants. This point will be expanded
further in Section 3 - Dependence of Invariants on Magnetic Field Model and in Appendiz
B - Comparison of Magnetic Field Models During the Main Phase.

This work documents a rigorous treatment of the calculation of adiabatic invari-
ants with MHD fields, presented as a stepping stone for exploratory modeling work in
radiation belt dynamics using MHD simulation. As a mode of study to compliment (not
replace) analysis using empirical fields, scientific inquiry using MHD simulation allows
one to powerfully (a) access the otherwise-unavailable global state such as the density,
flow velocity, pressure, and electric field and (b) experiment with impact of particular
physics. In the past, access to the self-consistent global state from MHD simulations has
allowed the community to answer questions on the now widely accepted importance of
ULF waves on radial diffusion (Fei et al., 2006) and drift-resonant electron interactions
(Elkington et al., 2002, 2003; Sarris et al., 2021). In addition, the work of Olsen et al.
(2000) discussed the possibility of generating the peaks in phase space density profiles
driven solely by Ultra Low Frequency (ULF) waves, and (Li et al., 2017) explored the
calculation of radial diffusion coefficients using MHD modeling.

Broadly, MHD simulations offer the ability to inspect and evaluate wave propaga-
tion in the mHz frequency range, which are not included in empirical magnetic field mod-
els. Similarly, MHD simulation offers access to the global self-consistent physical vari-
ables mentioned, which are not available in empirical models like T'syganenko. While em-
pirical models of these variables do exist, they generally do not contain the wave prop-



agation, and are not self-consistent with the empirical magnetic field model. However,
such variables are crucial to describing the full magnetospheric system. Furthermore, it

is common for MHD simulation codes to have ”optional” features, such as the inclusion

of the Hall term (Huba, 1995) which can lead to qualitatively different results in the global
magnetosphere (Bard & Dorelli, 2021). Other optional features include coupling the sim-
ulation with other models which cover aspects of the magnetospheric system known to

be inaccurate with MHD alone (such as the ring current) (Heinemann & Wolf, 2001; Tof-
foletto et al., 2003).

The long-term principle question which this work aims to move towards address-
ing is that of what causes electron acceleration in the outer radiation belts. The lead-
ing method of addressing this is through the analysis of adiabatic invariant ordered phase
space density measurements. In this style of analysis, different proposed mechanisms are
reasoned using fundamental physics to generate different structural changes in the time-
dependent f(M, K, L*;t), and spacecraft measured fops(M, K, L*;t) are compared against
those anticipated structural changes. The leading two mechanisms to explain electron
acceleration in the outer radiation belt are (a) local acceleration, driven by waves (such
as chorus) which directly violate all three invariants, after which the particles are accel-
erated at their existing locations around L < 6.6 (these are sometimes called ” grow-
ing peak” events), and (b) radial diffusion driven by processes (such as ULF wave in-
teraction), which directly violate the third invariant, and transport particles from higher
L-shells to lower L-shells, causing the particle energy to increase to adjust for its posi-
tion in a stronger magnetic field while conserving first and second invariants. Radial dif-
fusion is sometimes known as external acceleration. The result is a conclusion that the
spacecraft measured fops(M, K, L*;t) appears indicative of a certain mechanism over oth-
ers.

This method of analysis has been implemented using Polar spacecraft in-situ data
in e.g., Green & Kivelson (2004) and Selesnick & Blake (2000), and Van Allen Probes
in-situ data in e.g., Reeves et al. (2013) and Boyd et al. (2018). In Green & Kivelson (2004)
and Boyd et al. (2018), a large number of events were analyzed and it was found that
the structural changes in fops(M, K, L*) were most commonly aligned with local accel-
eration driven by chrorus wave activity. In addition, the work of Allison et al. (2021) pro-
vided a detailed analysis of the peaks in phase space density that corresponded to the
multi-MeV electrons. It was noted in Boyd et al. (2018) that chorus acceleration was only
the case for 87% of the events, leaving uncertainty as to alternative mechanisms which,
while the minority, still play a role in electron acceleration overall. The question as to
what happens when evidence for local acceleration is absent is complicated by the fact
that during these times, multiple mechanisms may be occurring simultaneously, possi-
bly with secondary interactions. In these studies, fops(M, K, L*) was computed using
Tsyganenko empirical models, and Green & Kivelson (2004) warns as to the model-dependent
nature of the calculation. Immediate questions to come from the methods developed here
of extending adiabatic invariant calculation to MHD models are (a) are the previous re-
sults in the literature reproducible when the invariants are calculated from MHD mod-
els? and (b) what is available in the global MHD model context (such as wave activity
and more generally p, u, p, and E) that can inform us as to what physics may be simul-
taneously occurring that affects the acceleration?

The calculation of the adiabatic invariants is developed here with the LFM global
magnetospheric simulation code. LFM uses an adapted grid with cell density clustered
around the inner magnetosphere, magnetosheath, and bow shock (Lyon et al., 2004). These
areas were selected to provide finer detail in the field geometry where it is required. In
this work we use a standalone version of LFM, and also a coupled model LEM-RCM,
where RCM (Rice Convection Model) provides enhanced modeling of the ring current
using a multi-fluid formalization more suited to that problem than MHD (Toffoletto et
al., 2003). In this work we use LFM at ”quad” resolution, which spans 106 x 96 x 128



cells along radial, azimuthal, and polar directions. The inner boundary for LEM sim-
ulations is at 2.1 Rg, with the full computational domain extending from +30 Rg to -
300 Rg along the sun-earth line (SM x-axis) and from -150 Rg to +150 R along the
SM y-axis and z-axis.

In Section 2 - Algorithms and Methods, we outline the numerical techniques devel-
oped to accomplish the adiabatic invariant calculation, as well as the tuning of key al-
gorithmic parameters. In Section 3 - Dependence of Invariants on Magnetic Field Model
we analyze a storm to note the differences between the MHD-driven LFM/LFM-RCM
and the empirical Tsyganenko T96 and TS05 models. In this section, a time series of L*
is also presented and compared between the LFM and LFM-RCM models. In Section 4 - Summary,
we summarize the work performed and anticipate future scientific advances.

In the Appendices, we provide supporting data to better understand this paper such
as a summary of OMNI IMF Parameters during 2 October 2013 Storm, a comparison
of magnetic field models during the main phase, an example of non-closed drift shell with
features that complicate calculation of L*, and an evaluation of alternative approaches
for computing L* such as with the International Geomagnetic Reference Field (IGRF)
or using 2D polar cap integration.

2 Algorithms and Methods

Charged particles trapped in the radiation belts undergo three fundamental peri-
odic motions. These period motions are gyration perpendicular to a magnetic field line,
magnetic mirroring along a magnetic field line (bounce motion, sometimes called mag-
netic bottling), and azimuthal drift about the Earth. The first periodic motion, gyra-
tion, is the outcome of the continuous influence of the Lorentz force as it alters the di-
rection of v, , causing the particle to track a helix path. The second periodic motion,
magnetic mirroring, is the outcome of the exchange of velocity between v and v, as the
particle moves to increasing field strengths while conserving its kinetic energy and first
invariant. For particles with a pitch angle outside a critical loss-cone threshold (Kallen-
rode, 2004; Tu et al., 2010), the particle will encounter a sufficiently strong field that will
transfer any remaining parallel velocity into perpendicular velocity before reversing the
particle in the direction from which it came. The third periodic motion, azimuthal drift,
is caused by a combination of VB drift due to gradients in the magnetic field strength
along the bounce path, and curvature drift due to the curvature of field lines along the
bounce path (Fitzpatrick, 2022; Chen et al., 1984). Both of these influences act in a dif-
ferent direction based on the charge, and as a result protons and electrons azumithally
drift in opposite directions. The surface covered by the particle as it bounces northward /southward
along field lines, and its azimuthal drift about the Earth is called the particle drift shell.
When combined together, these three structured and periodic motions (gyration, bounc-
ing, and drifting) account for the trajectory of trapped particle when no outside work
is being done.

The adiabatic invariants in this paper are calculated using numerical methods as
a function of global magnetic field output from the LFM model and empirical models
and initial particle velocity /position state.

Each adiabatic invariant corresponds to an integration over a path/surface asso-
ciated with the respective periodic motion in the action integral. For the first invariant
M this periodic motion is the path of a single gyration, for the second invariant K this
is the bounce path, and for the third invariant L* this is the drift shell. In the case of
most geomagnetically trapped charged particles, the gyro radius is sufficiently small com-
pared to the scale of structure in the magnetic field such that we can consider B con-
stant over the entire gyration and thus no integration is required. We note that there
are some scenarios where this is not the case, such as with electron motion under very



strongly curved field lines relative to the gyroradius (Artemyev et al., 2013). Therefore,
calculation of the first invariant is trivial, but is discussed here for completeness.

The first adiabatic invariant, M, is calculated directly with the equation given in
Roederer & Zhang (2016) and Murphy (2017). In this equation, p is the momentum, mg
is the rest mass, B is the magnetic field strength averaged over a gyration (Chen et al.,
1984), p, is the perpendicular momentum, and « is the particle’s pitch angle.

_ p? _ pzsin2(7a) 3)
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The second adiabatic invariant is calculated using the bounce path. The bounce
path is determined as a portion of the full field line trace done in both directions from
the point in question. Given a starting point, the bounce path extends northward and
southward, necessarily between the first occurrence of the magnetic mirroring strength
B,, in each direction.

In this work, the field line trace is done by using the Runge-Kutta 4-5 method (Fehlberg,
1969). In mathematical terms, the trace of the magnetic field line is computed by solv-

ing
B _odx(t)
x(0) = xq¢, x= T oB (4)

where x(t) is the position of the field line trace at position ¢, x¢ is the starting point of
the trace, B is the local direction of the magnetic field, and a is a constant to convert
from units of magnetic field intensity to units of space over time (Kos et al., 2019). We
note that we typically start the field line trace at the magnetic equator, in practice us-
ing Runge-Kutta 4-5 twice: once forward (for ¢ > 0) to go northward and once back-
wards (for ¢ < 0) to go southward. The trace is terminated when the inner (outer) bound-
ary is reached, indicating a closed (open) field line.

The most common scenario for a field line in the inner magnetosphere is that the
field strength is the strongest at the Earth’s surface, declines monotonically towards a
minimum value, and then increases again as the field line comes back towards the earth.
In this case, the selection of any point along the same field line will produce the same
bounce path. This is not the case for certain dayside field lines and associated values of
B, associated with drift shell splitting (Shabansky, 1971; McCollough et al., 2012). For
these types of field lines, the field line intensity versus magnetic latitude will have two
“wells” or local minima which will encapsulate the bounce path for sufficiently small B,,,
whereas sufficiently large B,, will not be affected by this structure. Therefore, particles
with sufficiently low B, mirroring on such a field line may be trapped on a different bounce
path depending on their starting location or bounce phase when entering the Shaban-
sky region.

Because of this phenomenon, the bounce path is determined as a function of two
parameters: the starting point and B,,. Specifically, the path is determined by iterat-
ing southwards and northwards along the field line trace until B,, is encountered. The
starting point is not important if B at the starting point is less than B,,. When B,, is
low enough for the particle to become trapped in one of the two bottom wells, a Sha-
bansky orbit will occur.

Once the bounce path is determined, the next step is to integrate along the bounce
path using the equation also derived in Equation 1 (Roederer & Zhang, 2016). In this
equation, B(s) is the magnetic field strength at the position along the trace, B,, is the
magnetic mirroring strength, and ds is the differential length along the trace path. Nu-
merically, in this work this equation is integrated using trapezoidal integration with ds —
As estimated as spatial distance between steps in the field line trace. The S.I. units of
K obtained through this method are km - v/nT.



The final third adiabatic invariant, L*, corresponds to the total magnetic flux out-
side the particle’s drift shell. To calculate L*, we first evaluate the drift shell for the par-
ticle. As the particle moves along its bounce path, it also undergoes an azimuthal drift
based on its charge due to curvature of the field line and radial gradients in the field strength.
The surface spanned by the particle’s bounce motion and azimuthal drift is known as
the drift shell. This surface necessarily never extends to either magnetic pole. It visu-
ally appears as a belt or ring around the earth. For a summary of the forces which con-
tribute to the azimuthal drift, the reader is referred to Northrop (1963).

The classic way of calculating the drift shell is through a full particle trace. This
involves solving a differential equation for the particle’s position and momentum through-
out its drift orbit and field line trace, for all points along its trajectory. However, this
is computationally very expensive and most notably can be simplified using known physics.
When it is known that the particle is trapped, the particle will necessarily move spatially
inwards or outwards during the azimuthal drift to conserve its second invariant K cor-
responding to the fixed B,, (Roederer & Zhang, 2016). This key simplification forms the
foundation of the Roederer method and allows us to determine the drift shell by iter-
ating through magnetic local times (MLT’s), and selecting the field line to find one which
conserves K from the fixed B,,. This selection of the field line is significantly less com-
putationally expensive than a full particle trace, though it leaves the question as to how
many MLT’s and how many field line searches to match K from B,, are required to ac-
curately describe the drift shell.

Drift shell splitting is an important feature to capture in these calculations of the
drift shell. The foundational work of Schulz & Lanzerotti (1974) established that drift
shell splitting arises from either of two local time asymmetries in the magnetosphere: (a)
local time asymmetries in the magnetic field, and to a lesser extent (b) from the pres-
ence of an electric field, such as the dawn-to-dusk electric field (Walsh et al., 2014). The
Roederer method used in this work addresses the drift shell splitting from (a) but not
(b), due to the electric field being a lesser source of drift shell splitting and the effects
complicating the key simplifications that make the algorithm computationally efficient.

We present two methods for calculating the drift shell of a particle, the first which
does so from fixed and equally spaced magnetic local times (MLT’s) around Earth, and
the second does so using automatically spaced MLT’s. The automatically spaced MLT
mode is backed by a Runge-Kutta algorithm which varies the spacing to meet user-specified
absolute and relative error tolerances.

The overall equation used to calculate L* in this work is,

* Rinner 2m
L* = R 27 . 9 ’
E fO S (einner (¢))d¢

where Rinner is the inner boundary of the model, 6;,,¢- is the northern most colatitude
of the field line trace at the model inner boundary, and ¢ is the MLT as an angle between
0 and 27. This is a modified Roederer & Zhang (2016) Equation 3.40, with a scaling of
Rinner/Rg. This scaling is derived by extending the field line at the inner boundary

of the model to 1 Rg using the dipole model, and in particular the equation r = Lsin® ().
When this equation is applied at the footpoint at both the model inner boundary loca-
tion and at the magnetically connected surface footpoint, we can derive the equation,

Sin2 (ginner)7 (6)

(5)

202
sin (esurface) =
inner

where Ogyur face is the northern most colatitude of the field line at the surface of Earth.
Through this method, we evaluate L* at 1 Rg, while simultaneously accommodating mag-
netic field models with inner boundaries above 1 Rg.

In the fixed and equally spaced mode, the drift shell field line is specified at Ny;pr
unique and equally spaced MLT’s around Earth. We denote the MLTs as ¢; for i = 1,2, ..., Nypp.



First, a field line trace and accompanying K (¢1,d;) is found for the starting point at dis-
tance d from the magnetic equator.

Next, a field line search is done at each MLT to place the drift shell field line there.
The search varies the candidate field line by way of the equatorial distance d, and con-
tinues to vary it until a field line is found which produces the desired K(¢;,d;) ~ K(¢1,d1)
using the same B,,,. We note that in the case of equatorial mirroring particles, a short-
cut exists, wherein one can instead search for d in By, (¢4, d) = Bin(¢1,d1), a com-
putationally simpler task because no field line trace is required, as this inherently sat-
isfies the second invariant K when K = 0. This shortcut essentially amounts to find-
ing an isoline of Bjy;, around Earth.

To perform the search, candidate distances are tested using a linear search approach.
A large step size is first used (called the initial step, equal to 0.05 Rg) to bracket the
target, and then a smaller step size is used to refine the estimate (called the refined step,
equal to 0.01 Rg). The stepping approach was used over bisection (as recommended in
Murphy (2017)) because complex magnetospheres were found where the curve K (¢, d)
vs. d possessed multiple matching K. When this occurred, the correct one (as determined
by drift physics) is that which is closest to the previous drift shell field line. However,
bisection would be unable to guarantee which matching solution would be obtained. For
this reason, the algorithm was designed to gradually approach the target with carefully
chosen step sizes. The sizes of both the major and refined steps were chosen to be smaller
than the distances observed between multiple matching K in these complex magneto-
spheres.

When the iteration of refined steps identifies an interval of the refined step size hold-
ing d, the final interval is interpolated. A more controlled use of bisection was experi-
mented with to replace this interpolation, where it would be used just over this final in-
terval. The advantage would be that it could guarantee arbitrary error control between
the target and acquired K values. However, we found that this approach resulted in code
which was 2.5 times slower (with relative error set to 107°), and the impact on the fi-
nal L* was less than 0.1%. For this reason, it was deemed that the interpolation approach
was sufficient.

In the automatically spaced MLT mode, the method for searching field lines at each
MLT is similar. The key difference is that the MLT's selected are found while continu-
ously solving the integral in Equation 5. Specifically, the integral is solved using Explicit
Runge-Kutta method of order 4-5 (RK45) (Dormand & Prince, 1980), as implemented
in the SciPy package (Virtanen et al., 2020), which selects MLT's along the integral bounds.
Specifically, it solves the integral D(¢,,) = fo "7 $in?(Qipner (6))dé through the differ-
ential equation % = sin®(Ainner(¢)) and D(0) = 0, particularly seeking D(27) to ar-
rive at the integral in Equation 5. The method is configured with user-specified relative
and absolute error tolerances, which are used to automatically select where % is eval-
uated based on its rate of change.

We note that the method algorithm is also parameterized by initial and maximum
MLT spacings. These were selected through an experiment performed using the fixed
equally-spaced MLT mode of the code. In this experiment, we looked at both simple (quiet-
time) and complex (disturbed) magnetospheres with different magnetic field models, and
varied the number of local times. We visually inspected these plots to look for where the
calculation became stable. Calculation stability is determined by using a sufficiently high
local time resolution (number of local time points) to sufficiently capture all necessary
drift shell information. The results of this experiment can be found in Figure 1. We con-
cluded that in the best case, the calculation becomes stable around four MLTSs (the left
column), and at the worst, around 16 (most of the right column). Therefore, we set the
maximum spacing to 27 /4 and the initial spacing to 27/16.
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Figure 1. An experiment to investigate the minimum number of local times required in the
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the calculation became stable to determine at what point the number of local times is sufficient
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Drift Shell Resolution throughout 2 October 2013 Storm
(Starting 6.6 R Midnight, Mirroring 30° MLAT, atol = rtol = 1e-4)
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geogmagnetic storm, when the automatically spaced MLT mode is used. In this plot, the absolute
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We note that while the automatically spaced MLT mode provides desirable auto-
mated error control, it is usually 2-3 times slower than simply using the fixed equally spaced
MLT mode with a safe spacing of 27/16. Therefore, we recommend that the fixed equally
spaced MLT mode be used for ”quicklook” initial data analysis, and the automatically
spaced MLT mode be used for refined publication-quality results.

In Figure 2 we observe the automatically spaced MLT mode selecting a different
number of MLTs throughout the course of a storm. The number of local times selected
varies throughout the storm by a factor of two. The drift shells which required the high-
est number of MLTs to model occurred during the main phase of the storm. A second
increase in drift shell complexity occurred later into the recovery phase, around where
a secondary yet small drop in D, occurred.

The automatically spaced MLT mode results in the completed integral; the fixed
equally spaced MLT mode still requires numerical integration. This is done through trape-
zoidal integration after smoothing the integrand to counter any numerical noise from the
drift shell calculation in 0;,ner(¢). The smoothing is performed with a cubic spline con-
strained with a periodic condition forcing the derivative of the integrand and the inte-
grand itself equal at the boundary.

We review that the integral evaluated is the modified integral given in (Roederer
& Zhang, 2016). Experiments were performed where the magnetic flux through the po-
lar cap ® was numerically integrated through

@:/ B dA, 1)

with B provided by IGRF (Olsen et al., 2000). However, it was found that this approach
changed L* less than 1.5% throughout the outer radiation belt (L* > 3), while being
more computationally expensive, and therefore was not used. More information on this
can be found in Appendix D - Evaluation of Alternatives: IGRF and 2D Polar Cap In-
tegration.

3 Dependence of Invariants on Magnetic Field Model

In this section, we study the dependence of invariant calculation on magnetic field
models using data from the 2 October 2013 geomagnetic storm. This is done to moti-
vate future work which will investigate the effects of magnetic field model used to orga-
nize spacecraft-collected phase space density data. The models studied in this section
are (a) the two MHD models LFM and LFM-RCM and the empirical models (b) T96
and TS05, all driven by solar wind conditions provided by 5-minute OMNI and the 5-
minute QinDenton dataset for TS05 W parameters. In this section, we examine the adi-
abatic invariants calculated in each model, and discuss how features such as increased
tail stretching, differing current structures, and off-equator dayside field line minima con-
tribute to different invariant profiles.

Simulations of the 2 October 2013 geomagnetic storm were selected to provide a
practical application for study. Through observation, the 2 October 2013 geomagnetic
storm was classified as a G2 Moderate storm on the NOAA Space Weather Prediction
Center (SWPC) scale, originating from a coronal mass ejection with an observed nom-
inal solar wind speed of 600 km/s and observed strongly southward B, with an observed
nominal intensity of -19 nT. The LFM and LFM-RCM simulations were driven by L1
satellite observations of solar wind conditions from the WIND spacecraft (Gloeckler et
al., 1995).

The structure of the inner magnetospheric fields holds key properties for understand-
ing the orbit of geomagnetically trapped particles. The structure of the inner magne-
tospheric fields is determined from the currents in the magnetosphere and the Earth’s
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geomagnetic dynamo. The Earth’s dynamo largely corresponds to the internal field, while
the currents in the magnetosphere correspond to the external field. To characterize the
external field, the intensity of the current contribution originating from the external field
is calculated using Ampere’s law.

1
Jeact = %V X (Bmodel - Bdipole) (8)

Visualization of this quantity across a meridional slice shows much finer level of cur-
rent detail in the LEM/LFM-RCM than T96/TS05 as show in Figure 3. T96/TS05 leave
absent many field-aligned currents around the poles and into the tail, and greatly sim-
plify the cusp currents. Finally, all models show different interpretations of night-side
plasmasphere currents, with this current largely absent in stand-alone LFM. These mul-
tiple models also show the footpoint of the cusp current at roughly the same location.

Field line traces are added to show differences in tail stretching and dayside com-
pression. The traces start at magnetic latitudes in the inner boundary corresponding to
the footpoints of field lines associated with L-Shells of L = 1,2,3,... of a dipole model.
We see a drastically higher level of stretching in the T96/TS05 models, and similar lev-
els of stretching between LFM and LFM-RCM.

Magnetic field models can be compared in reference to geosynchronous magnetome-
ter data orbiting at 6.6 Rg in Figure 4. In this figure, data from the GOES-13 magne-
tometer is plotted alongside the magnetic field obtained from each model, taken at the
ephemeris location of GOES-13. In the case of LFM/LFM-RCM, the magnetic field is
linearly interpolated within a grid cell. In the case of T96/TS05, the model is evaluated
directly at the GOES-13 satellite ephemeris.

This comparison illustrates agreement in B, and B,, but less so in the B,. The
disagreement in B, is particularly emphasized during the main phase and early recov-
ery period of the storm. During the extended recovery period, the shape of B, is broadly
retained throughout the recovery and during brief fluctuation (10/03, 18:00). We note
that in LFM and LFM-RCM, B, is offset from the observation even though the fluctu-
ations match. This offset in B, has been discussed in the literature and is understood
to be related to tail stretching and LFM’s tendency to produce weaker-than-reality cur-
rents in the plasma sheet (Wiltberger et al., 2000). A zoomed version of this plot is in-
cluded in Appendix B - Comparison of Magnetic Field Models During the Main Phase,
which highlights the differences in B, during the main phase of the storm up to and slightly
after the storm’s minimum D.;.

The differences in B, between approximately 2 October at 4:00 and 16:00 are now
discussed in the context of Equations 1 and 5. When calculating K in this context, the
parameters dependent on the magnetic field model are the mirror points s; and s3, and
the magnetic field strength along the bounce path, B(s). In our comparison, we see that
|B| differs between models by as much as 50%. Smaller |B|’s along the bounce path would
make the bounce path longer (required to go to higher MLATS to reach B,,), and B(s)
smaller along the bounce path. These errors would propagate to errors in K, which would
then propagate into an error in the drift shell and in turn L*.

To illustrate this further, a profile of K is compared between models in Figure 5.
In this visualization, the color at a particular location corresponds to the K associated
with a particle mirroring on that magnetic field line at that magnetic latitude. The solid
black lines are field line traces are each L-shell, and the dashed black lines are isolines
of constant K. This plot was constructed with a 2D grid with linear spaced distances
and mirroring magnetic latitudes. For each grid point, K was calculated for particles mir-

—13—



LFM During Dst Minimum - Meridional Slice

&
£
1020 &
—_ - L
2 & 2
= o 2
n o O
N 108 8
X
L
—_
]
O
.100
X SM (Re)
LFM-RCM During Dst Minimum - Meridional Slice
: &
£
> 1020 T
—_ - L
g 2
= T @
Y S c
) o O
N 1013 A
X 4
w C
_5. 8
_
S
, ©
0 5 0 -5 -i0 10
X SM (Re)
T96 During Dst Minimum - Meridional Slice
I &
£
‘10°s §
— s [
g itz
s - T2
n - o
2 1018 O
- w <
i I
3
.100

X SM (Re)

TSO05 During Dst Minimum - Meridional Slice

Z SM (Re)
External Field
Current Density (nA/m?)

. . 100
=5 -10 10

10 5

0
X SM (Re)

Figure 3. External field current density contribution from different magnetic field models in
the inner magnetosphere, during Ds; minimum of the 2 October 2013 storm. This quantity is
calculated using Ampere’s law in Equation 3. Field line traces are overlaid starting at magnetic
latitudes on the inner boundary corresponding to the footpoint of field lines associated with
L-Shells of L = 1,2,3,... in a dipole model. In this plot, we note the finer detail of current struc-
tures in LFM and LFM-RCM, increased tail stretching in T96 and TS05, and the differences in
night-side plasmasphere currents between all models.
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Comparison of Magnetic Field Models During Storm along GOES13 Track
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Figure 4. Magnetic field models compared to geosynchronous GOES-13 magnetometer data
at 6.6 Rg. The magnetic field components are plotted in GSM coordinates. This comparison
illustrates good agreement with observation in the B, and B, components for all models, and
then much disagreement in the B, particularly during the main phase and early recovery period
of the storm. The two vertical bars identify the minimum D,; (left vertical bar), and the quiet

time periods referenced in Figure 1 and Figure 5.
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Figure 5. Profile of K (quiet times on left, disturbed period on right). In this visualization,
the color at a particle location corresponds to the K associated with a particle mirroring on that
magnetic field line at that magnetic latitude. The color of the plot is the value of K for a particle
mirroring on that magnetic field line at that magnetic latitude. The dashed lines are isolines of
constant K. The solid black lines are field line traces for each L-shell. A prominent feature of
this plot is the abrupt upward trend for the K = 0 line on the dayside, which is slightly different
shape for each model. This is due to the moving location of the minimum field intensity further

out into the dayside.

roring at the given magnetic latitude, starting at the point (d, 0, 0) for distance d in the
SM coordinate system.

A prominent feature of this plot is the abrupt upward trend for the K=0 lines on
the dayside. This is due to the moving location of the minimum field intensity further
out into the dayside. The change in the minimum field intensity is understood to be due
to the influence of the solar wind, the dipole tilt, Shabansky orbits and off-equatorial min-
ima.

The K profile holds implications for the study of equatorially mirroring test par-
ticle simulations. An assumption of equatorially mirroring test particle simulations is that
K = 0 at B,,in, which also coincides with the magnetic equitorial plane in the simu-
lation. This property is shown here to generally hold within ~ 10 Rg, on both the day-
side and nightside, but generally not farther out. This observation is reassuring for the
ability for test particle simulations to model the outer radiation belt largely contained
within this range. We notice that the shape of this K = 0 line is slightly different be-
tween each model, with T96 particularly having an out-of-trend shape.

In Konstantinidis & Sarris (2015), magnetic field models were compared through
the analysis of L* vs increasing distances into the tail. The authors of this work report
differences in adiabatic invariants between various empirical model tools, with variations
in L* as much as 5% at 6 Rg and 30% at 8 Rg. The tools examined by those authors
included LANLStar (Yu et al., 2012), IRBEM (https://prbem.github.io/IRBEM/), SPEN-
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Figure 6. Calculation of L™ at increasing distances into the tail between magnetic field mod-
els during quiet-time conditions. We note that LFM and LEM-RCM contain less stretching than
the T96 and TS05 models, and therefore starting the same point in the represent notable differ-
ent values of K. This plot reflects a similar visualization as found in (Konstantinidis & Sarris,
2015) where LANLstar, IRBEM, SPENVIS, and a particle tracer were compared.

VIS (https://www.spenvis.oma.be/), and a particle tracer. An analogous comparison
is presented here using the models studied in this paper during a quiet magnetosphere,
shown in Figure 6. In each plot, one can see separation between the MHD (LFM and
LFM-RCM) and the empirical models (TS05 and T96). This is understood to be because
the MHD models contain less stretching than the empirical models, therefore yielding
different K.

Finally, in Figure 7 we see L* calculated at increasing distances into the tail and
two mirroring magnetic latitudes (15° and 30°). The OMNI IMF parameters during this
storm are provided in Appendiz A. The most variation in L* over the course of the storm
occurs at larger distances into the tail, where the influence of the external field over the
dipole is the greatest. It is noted that during the main phase of the storm, the drift shells
associated with d = —8 Rpg are largely not closed and do not allow the algorithm to
converge. An example of a magnetosphere which contains such not closed drift shells can
be found in Appendiz C Figure C1. A zoomed in plot displaying a comparison during
the main phase of the storm between GOES measurements of B, and the correspond-
ing model B, at the GOES ephemeris for LFM, LFM-RCM, T96, and TS05 can be found
in Appendiz B Figure B1.

There are interesting differences between LFM and LFM-RCM during the begin-
ning of the recovery phase on 2 October at 12:00 when the large magnetospheric field
disturbances have completed but ring current enhancement continues. The decline in L*
for the d = —8 Rp lines is similar, but shows a much different shape around 2 Octo-
ber at 18:00. This is likely due to the more detailed ring current modeling that RCM

—17—



provides that acts as a feedback, providing pressure modification to the MHD solution

by LFM. The fluctuation in L* around 3 October at 18:00 corresponds with a denser burst
of solar wind traveling at the same velocity as the solar wind preceding and following.
Both magnetic field models produce comparable L*’s that reflect the magnetosphere’s
response to this small/brief solar wind density fluctuation.

4 Summary

In this paper we present a rigorously developed methodology for calculating adi-
abatic invariants in MHD-driven fields, starting with those from LFM. Our methodol-
ogy follows groundwork first laid out in Roederer & Zhang (2016) and further refined
in Murphy (2017). The rigorous development and documentation of this algorithm is a
contribution to the research community as groundwork preceding the code’s use in sci-
entific studies.

In addition to the methodology, this paper presented evidence to justify the effort
spent developing tools for the calculation of adiabatic invariants on MHD-driven fields.
A detailed analysis of meridional current derived from LFM, LEM-RCM, T96, and TS05
was presented and showed differences between the models that should be considered to
establish confidence in results that use L*. In particular, we showed a much higher level
of detail in current complexity in the MHD-driven models compared to the empirical mod-
els.

Calculation of L* over the course of the 2 October 2013 storm for LFM and LFM-
RCM showed that differences in L* exist primarily at larger L* in the magnetosphere
where the external field’s influence over the dipole grows. The time series of the L* cal-
culation between LFM and LFM-RCM showed influence of the ring current modeling
as a feedback mechanism that effects L*.

These tools are developed with the intent to enhance the capability of modeling
studies using L* ;| as well as extending the ability to accurately organize in-situ data us-
ing adiabatic invariants. In this paper we noted the difference in L* structure based on
whether LFM was coupled with the RCM model. A rich history of magnetospheric sim-
ulation has explored different variants of the MHD equations (such as Hall and Multi-
Fluid), as well as complex many-model coupling (Merkin 2022; Pham et al. 2022). By
establishing methodology and code to analyze the dynamics of trapped particles under
simulated magnetospheres, we begin a period of science where the impacts of modeling
choices on trapped charged particle dynamics can be studied.

5 Data Availability

Code which implements the algorithms presented in this paper at the time of pub-
lication is made openly available on Zenodo at https://[will-be-uploaded-upon-acceptance].
Future updates of the code will be made available at https://github.com/ddasilva/
dasilva-invariants. A package home page which includes both API documentation
and usage examples is currently available online at https://dasilva-invariants.readthedocs
.i0/. The authors recommend that future users of the package check the home page and
use the latest available version for their research, and that publications which using the
package acknowledge it through citation of this manuscript.

Data from the OMNI database is available from OMNIWeb and NASA Goddard
Spaceflight Center (GSFC) Space Physics Data Facility (SPDF) at https://omniweb
.gsfc.nasa.gov/. Data from the GOES13 magnetometers is available online from the
National Centers for Environmental Information (NCEI) at https://www.ngdc.noaa
.gov/stp/satellite/goes/. Runs of LFM are available on-demand from the Commu-
nity Coordinate Modeling Center’s (CCMC’s) Run-on-Request System at https://ccmc
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Figure 7. Values of Lx calculated at various distances into the tail during the 2 October 2013

Storm. We note that during the main phase of the storm many of the drift shells are not closed

and resulted in L™ calculations that did not converge. Furthermore, the biggest deviations of L*

from the dipole L™ occur farther into the magnetosphere where the external field holds greater

influence over the dipole field.
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.gsfc.nasa.gov/models/LFM~LTR-2_1_5/. The QinDenton dataset used for TS05 W
parameters can be found at http://mag.gmu.edu/ftp/QinDenton/5min/merged/latest/.

Acknowledgments

The authors would like to thank (a) the University Corporation for Atmospheric
Research (UCAR) and the associated High Altitude Observatory (HAO) for providing
supercomputing resources used for the development of this manuscript, and (b) the NASA
Future Investigators in NASA Earth and Space Science and Technology (FINESST) pro-
gram for providing funding to complete this research.

Appendix A OMNI IMF Parameters during 2 October 2013 Storm

The IMF parameters propagated from L1 observations to the bow shock by the OMNI
data product show the type of incoming solar wind during the storm as seen in Figure
A1. This data was taken from the OMNI database (https://omniweb.gsfc.nasa.gov/).
The CME-driven enhancement associated with abrupt increases in IMF number density
and velocity occurs around 2 October at 06:00. Following this abrupt increase, the IMF
number density reduced back down to a nominal state, while the solar wind speed grad-
ually decreases over the next few days. Around 3 October at 18:00 is a “blip” of increased
IMF number density with in-trend IMF velocities, that in turn increases the IMF dy-
namic pressure and affects L* in the tail, as shown in Figure 7.

Appendix B Comparison of Magnetic Field Models During the Main
Phase

In the 2 October 2013 storm analyzed in this paper, a comparison between the con-
sidered model’s field predictions at GOES-13 was presented in combination with GOES-
13 data in Figure 4. What is not immediately obvious from Figure 3 are the differences
during the main phase of the storm. A zoomed portion of that plot during the main phase
of the storm (up until and slightly after Dg; minimum) is presented here, with partic-
ular focus on the B, panel.

In this plot, we notice that the shape of B, observed by GOES-13 is much better
captured by the MHD models (LFM and LFM-RCM) than by the empirical models (T96
and TS05). Up until around 2 October at 04:30, all models show a gradual decrease in
B, , though the arc is more closely captured by the MHD models. However, only the MHD
models capture the increase in B, following this period. In the final hour of this plot,
GOES-13 observations show B, reducing again, which is not captured well by any of the
four models.

Appendix C Example of Non-Closed Drift Shell

The calculation of L* is only valid for trapped particle radiation and during times
where the magnetic field is changing slowly compared to the drift period. However, dur-
ing particular disturbed periods of the magnetosphere particles that were previously trapped
will no longer be trapped and will escape along open field lines. Furthermore, during par-
ticularly disturbed periods the magnetic field will change much faster than the drift pe-
riod and using one snapshot of the magnetospheric magnetic field will be insufficient to
describe the particle’s trajectory.

We illustrate one example of a particularly disturbed magnetosphere here, illus-
trated by an equatorial slice of the TS05 empirical model during the 2 October 2013 storm.
In this plot, the colors correspond to the log-scale magnetic field intensity, and the black
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OMNI IMF Parameters during 2 October 2013 Storm
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Figure Al. OMNI IMF Parameters during the 2 October 2013 storm. This data was taken
from the OMNI database, which propagates satellite observations of the upstream solar wind at
the L1 point to Earth’s bow shock for geomagnetic storm analysis. The two vertical bars identify

the minimum Dy (left vertical bar), and the quiet time period referenced in Figures 1 and 5.
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Comparison of Magnetic Field Models During Storm along GOES13 Track
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Figure B1l. Zoomed Portion of 2 October 2013 Storm during the main phase of the storm (up
until and slightly after Ds; minimum). In this plot, we notice that the shape of B, observed by
GOES-13 is much better captured by the MHD models (LFM and LFM-RCM) than by the em-
pirical models (T96 and TS05). Up until around 10/02 04:30, all models show a gradual decrease
in B, though the arc is more closely captured by the MHD models. However, only the MHD
models capture the increase in B, following this period. In the final hour of this plot, GOES-13

observations show Bz reducing again, which is captured well by no model.

lines are isolines of magnetic field intensity, drawn at cubically decreasing intensity lev-
els.

We recall that particles with 90° pitch angles will orbit along isolines of B,,;,. How-
ever, in this plot we see that night-side “islands” of magnetic field intensity exist in the
equatorial plane which would prevent such a trajectory from making a complete orbit
around the earth. The drift shell calculation description in Section 2 - Algorithms and Methods
describes visiting each magnetic local time under the assumption that a full orbit is made.
However, in a field such as this that will not be the case.

Furthermore, on the dayside, there exist “reversals” in the equatorial magnetic field
intensity isolines that conflict with the drift shell calculation. The drift shell calculation
assumes that each magnetic local time is only visited once, allowing the drift shell to be
convex. If the isolines of B reverse direction, the drift shell becomes concave and calcu-
lating one drift shell distance for that magnetic local time is no longer sufficient.

Appendix D Evaluation of Alternatives: IGRF and 2D Polar Cap In-
tegration

In this Appendix section, we evaluate alternatives to the methods presented in this
manuscript. Previous works such as Selesnick & Blake (2000) have suggested that IGRF
may be important to the calculation of L*, and other works such as Albert et al. (2018)
suggest that L* be calculated through a 2D integration over the polar cap using the equa-
tion L* = 2mko/(®PRE), where kg is Earth’s dipole moment, and ® = [[ B -1 dA as
in Equation 7. This is in contrast to the modified Roederer & Zhang (2016) equation
3.40 presented in Equation 5, whose derivation starts with the 2D integral form of ®,
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Figure C1. An example of a non-closed drift shell, which exhibits at least two features which
complicate the calculation of the drift shell and in turn L*. First, night-side “islands” of equa-
torial magnetic field intensity exist on the nightside, which would prevent particles mirroring at
Biin from making a full orbit around earth. Secondly, on the dayside there exist reversals in
the direction of the equatorial magnetic field intensity isolines which prevent the drift shell from

being convex (a condition required for our algorithm).
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Comparison of Manuscript Method with 2D Cap Integration using IGRF

8 2D Cap Integration at 1 Rg with IGRF Manuscript Method (Modified Roederer Eq. 3.40)
(IGRF is Cap Model & Internal to LFM) at 1 Rg with Pure LFM
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Figure D1. Top panel: Demonstration that using the 2D Polar Cap integration method with
the LFM internal model changed to IGRF as a post-processing step has a negligible impact on

L* (< 1.5%) for 3 < L < 6 compared to using the method presented in this manuscript. Bottom
panel: Demonstration without using the 2D polar cap integration, that the effect of changing the
LFM internal model to IGRF as a post-processing step has a negligible impact on L* (< 1.5%)
for3 < L < 6 compared to using LFM with an internal dipole (the official method of this

manuscript).
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applies the dipole model to provide B (Roederer & Zhang, 2016), and is modified against
using the dipole model to extend each footpoint from the model inner boundary to Earth’s
surface (a contribution of this work).

IGRF is an empirical model of Earth’s internal magnetic field designed to capture
deviations from the dipole and drifts in the magnetic structure over time. We investi-
gate using IGRF in two ways. First, we evaluate IGRF serving as an internal model for
LFM, wherein the for each point on the model grid the dipole field is subtracted and the
IGRF field is added to replace it as a post-processing step. We note that this results in
more realistic non-dipiolar near-Earth fields for the L* calculation, but also removes the
consistency of the fields with the MHD model physics used to produce them (which as-
sume an internal dipole). Second, we evaluate using IGRF to trace each drift shell foot-
point at the model inner boundary down to Earth’s surface, at which point the 2D in-
tegration over the polar cap would be performed.

An experiment is performed to evaluate the effect of doing both these alternatives
at the same time. The results are displayed in the top panel of Figure D1. To perform
the 2D polar cap integration at 1 Rp, we numerically integrated,

¢=2m pO=m/2
o = / / B,sin(0) R%dAdg, (D1)
¢=0 0=0surface(P)

where B, is the radial magnetic field component, and sy, face is the colatitude of the
point which results from tracing the drift shell footpoint at the model inner boundary
down to Earth’s surface using IGRF. In this experiment, it is found for 3 < L < 6 the
difference in L* between these two methods is within 1.5%. This was deemed a very small
change which did not outweigh the cost associated with integrating IGRF into the final
software and causing our results to now depend on the details of another model.

We further seek to understand whether spatial variations in the IGRF field strength
are impactful to the calculation. To further check this, an experiment is performed where
the 2D integration method is applied to produce L* corresponding to artificial circular
polar caps spanning varying magnetic latitudes. The calculation is repeated with B pro-
vided by the standard dipole model and then again with IGRF. It was found that for
polar caps extending between 30° and 60° MLAT, the difference between L* calculated
each way is less than 1.5%.

Furthermore, a calculation of the dipole strength of IGRF using the 2010 coeffi-
cients and Equation 6 of Alken et al. (2021) produced a value of B{¢®F =29 950.126 nT,
which is within 0.2% of LFM’s nominal BE*™ = 30,000 nT. However, we note that
the IGRF dipole strength drifts year-by-year, and has drifted on the order of 5% between
the years of 1900 to 2000.

A final experiment was performed to check the effect of replacing the LFM inter-
nal model with IGRF as a post-processing step, while holding the L* equation unchanged.
That was done to separate the effects of the 2D polar cap integration method from us-
ing IGRF as the internal model. The results are displayed in the bottom panel of Fig-
ure D1. It was found that when this the internal model was changed this way, the dif-
ference in L* was again less than 1.5%. For the same reasons as before, this difference
was deemed too small to be worth the cost.
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