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Abstract 18 

While physics-informed neural networks (PINNs) can solve the problem pertaining to 19 

the absence of boundary conditions in soil water systems, their results exhibit low 20 

accuracy primarily due to insufficient utilization of the available prior knowledge 21 

regarding soil hydraulic parameters. In this research, an improved PINNs framework 22 

is proposed, which introduces an optimizable saturated hydraulic conductivity into the 23 

activation function, and an advanced optimization strategy is developed to identify the 24 

optimal superparameters for the multi-objective loss function. The PINNs was trained 25 

using synthetic volumetric soil water content (VSWC) and soil matric potential (SMP) 26 

data generated by a numerical solution of the Richardson-Richards equation (RRE) 27 

for three soil types (silt loam, loam and sandy loam). The results show that the 28 

proposed framework increases the accuracy of SMP estimations in the unsaturated 29 

soil system. The results reveal that the relative error achieved by the proposed 30 

framework in loam or silt loam has been reduced by two orders of magnitude in 31 

comparison with that achieved by the framework introduced by Bandai and 32 

Ghezzehei (2020), indicating a significant improvement. While there is a slight 33 

reduction in the accuracy of volumetric soil water content estimation, this minor 34 

reduction has minimal practical significance. Both the soil water retention curve and 35 

the soil hydraulic conductivity exhibit superior performance at the near-saturation 36 

scale. For unsaturated flow in homogeneous soil, the proposed PINNs framework 37 

provides accurate estimations of soil hydraulic parameters and holds significant 38 

potential for the practical application and widespread adoption of PINNs in the realm 39 

of soil hydrodynamics. 40 
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1. Introduction 42 

Numerical simulation modelling of water flow in saturated-unsaturated soil systems is 43 

an important method to promote a quantitative understanding of hydrological 44 

processes, which is crucial for remote sensing, weather forecasting, irrigation 45 

management, natural disaster prediction, etc. (Babaeian et al., 2019; Robinson et al., 46 

2008). The study of soil hydrodynamics frequently relies on the numerical solution of 47 

differential equations, employing both the finite difference method and the finite 48 

element method. (Chávez-Negrete et al., 2018; Yazdchi, Khalili, & Valliappan, 1999).  49 

Despite significant progress, traditional analytical and computational tools still face 50 

enormous challenges due to high computational costs and uncertainties (Assouline, 51 

2006; Durner et al., 2008; Saito et al., 2006). These uncertainties include complex 52 

formulas, new algorithms, and sophisticated computer codes, as well as missing 53 

boundary conditions and significant errors in observations (Bitterlich et al., 2004; 54 

Carrera et al., 2005; Scanlon, et al., 2003, Raissi et al., 2019; Raissi et al., 2020). 55 

PINNs are a numerical simulation algorithm that has rapidly developed in recent years 56 

(Cai et al., 2021). They fit specific solutions to partial differential equations (PDEs) 57 

using neural networks. The loss function of the neural network consists of two parts, 58 

the observation error and the PDEs error, which allows PINN to fit a special solution 59 

of known physical knowledge from the measurement data. This new approach works 60 

well in computational physics.  61 

It is worth noting that Tartakovsky et al. (2020) only used soil matric potential data at 62 

observation sites and PINNs to estimate soil hydraulic properties (hydraulic 63 

conductivity functions (HCF) and water retention curves (WRC)) for unsaturated 64 

homogeneous soils. Bandai & Ghezzehei (2021) introduced a priori knowledge into 65 

the model structure and used two monotonic neural networks to estimate the WRC 66 

and HCF of the system, only using soil moisture content data to simulate soil moisture 67 

dynamics. Shi et al. (2022) replaced the known priori physical information with 68 



 

 

sparse regression and simulated the homogeneous soil moisture transport process 69 

under the boundary of evaporation and precipitation only using soil moisture content 70 

data. Shi et al. (2023) also found that hydrothermal coupling physical constraints 71 

improved the accuracy of soil hydraulic parameter estimation. PINNs were validated 72 

in complex 2D groundwater flow scenario (Wang et al., 2020). PINNs were used to 73 

perform a joint inversion in a steady-state advection-dispersion problem to simulate 74 

the conductivity, soil matric potential and concentration of the system and to estimate 75 

the parameters in the system. (He et al., 2020). The methods described above all use 76 

datasets generated from the results of hydrological model simulations. The estimation 77 

accuracy of PINNs was also validated by using measured volumetric water content 78 

(VSWC) from soil column infiltration experiments. (Depina et al., 2022)  79 

The focus of the above algorithm is to estimate soil hydraulic parameters using water 80 

potential or volumetric water content, combined with a priori knowledge. As sensor 81 

network measurements as infrastructure are more convenient and accurate, Yu et al. 82 

(2021) developed automated sampling devices that can simultaneously measure soil 83 

profile moisture and soil matric potential. PINNs need to adapt to the development of 84 

automated collection devices to utilize diverse measurement data. The diversity of 85 

measurement data advances optimization methods. Multi-task learning is 86 

representative, and its innovation is to automatically assign the weights of multiple 87 

objective functions to improve the generalization of the model (Zhang & Yang, 2018). 88 

The automatic assignment of weights for physical information loss and calibration 89 

point loss can improve the robustness and convenience of PINNs. 90 

Interfaces are needed in the algorithm to encode a priori knowledge based on 91 

historical observations and measurements into the optimizing algorithm. For example, 92 

adding physical information loss to the objective function is the underlying principle 93 

of PINNs (Raissi et al., 2019; Yang et al., 2019; Yang & Perdikaris, 2019; Zhao et al., 94 

2019; Zhu et al., 2019). Parameters are initialized with positive constraints to restrain 95 

the WCF and the WRC monotonically. Activation functions are important elements of 96 



 

 

neural networks, and they mainly play a role in introducing nonlinear transformations 97 

for each neuron in the network, thus enabling the neural network to learn and express 98 

more complex functional relationships (Apicella et al., 2021). Research on activation 99 

functions has focused on improving the robustness of optimization algorithms. The 100 

introduction of optimizable parameters in the activation function allows PINNs to 101 

incorporate more physical information and improve the estimation accuracy of 102 

models. 103 

In this paper, we will make enhancement based on the study of Bandai et al (Bandai & 104 

Ghezzehei, 2021). Firstly, we add the soil matric potential calibration points to reduce 105 

the error of the soil matric potential estimation. We also propose a new s-type 106 

activation function that incorporates the shape prior knowledge of the Van Genuchten 107 

(VG) model into the model architecture, and demonstrate the effectiveness of the 108 

model by comparing it with the original version. The framework's performance was 109 

investigated by randomly initializing the neural network parameters on the generated 110 

training set data, repeating the experiment 30 times, and calculating the confidence 111 

interval of the results. To investigate the generalizability of the framework, PINN was 112 

trained on data from three different soil types (loam, sandy loam, and silt loam).  113 

2. Background 114 

2.1. Soil Moisture Transport Equation 115 

The Richardson-Richards Equation describes the movement of soil water in 116 

unsaturated soils. This quasilinear partial differential equation is fundamental for 117 

understanding water flow in porous media under variably saturated conditions.  118 

 𝜕𝜃(𝜓(𝑡,𝑧))

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(𝜓(𝑡, 𝑧)) (

𝜕𝜓(𝑡,𝑧)

𝜕𝑧
+ 1)]  (1) 119 

where t is time [T]; z is the vertical coordinate (positive upward) [L]; θ is the 120 



 

 

volumetric water content [L
3
 L

-3
]; ψ is the soil matric potential [L]; The functions K(ψ) 121 

and θ(ψ) are called hydraulic conductivity functions (HCF) and water retention curves 122 

(WRC) respectively.  123 

2.2 Neural networks and the Error Backpropagation 124 

Algorithm 125 

Neural networks, inspired by the human brain, are powerful models used in machine 126 

learning (Goodfellow et al., 2016). Artificial neural networks are composed of 127 

interconnected nodes, which are organized into layers. These layers include an input 128 

layer, one or more hidden layers, and an output layer. These networks learn from data 129 

by adjusting their internal parameters, namely weights and biases, to make accurate 130 

predictions or classifications. Backpropagation is a crucial process in neural network 131 

training (Wythoff, 1993). It fine-tunes the weights based on the error (loss) obtained 132 

during forward propagation. During forward propagation, input data is passed through 133 

the network. The error representing the difference between the predicted and actual 134 

results will be calculated. In back-propagation, this error is propagated backwards 135 

through the layers and the weights are adjusted to minimize the error. The goal is to 136 

find optimal weights that lead to lower error rates, thereby improving the 137 

generalization of the model. The input to the PINNS is not the features of the output, 138 

but the coordinate system of the partial differential equations. During error back 139 

propagation, the differential numerical solution for the corresponding grid of the 140 

output is computed while propagating one step forward. 141 

"Physics Information Neural Networks" (PINNs) are machine learning algorithms that 142 

combine data and prior knowledge, such as differential equations and parameters, to 143 

improve interpretability and convergence even with imperfect data (Raissi & 144 

Karniadakis, 2018; Raissi et al., 2019). This results in physically consistent and 145 

accurate predictions. PINNs encode prior knowledge into components like the loss 146 

function of machine learning. 147 
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3. Methods 149 

This paper uses physics-informed neural networks (PINNs) to obtain the solution of 150 

the Richards' equation (RRE) and soil hydraulic parameters from time series data of 151 

VSWC and SMP at various depths. Figure 1 illustrates the network structure, which 152 

comprises three fully connected neural networks. The neural network (fig. 1a) maps 153 

the system's coordinates t and z to the SMP. The hidden layer uses the hyperbolic 154 

tangent function as its activation function, while the output layer uses a negative 155 

exponential function to ensure a negative output SMP. In practice, neural network (fig. 156 

1b) is used to estimate hydraulic conductivity K and its output layer activation 157 

function is shown in Figure 2. Various soil hydraulic parameters correspond to 158 

different parameters c. A neural network (fig. 1c) is employed to estimate VSWC. The 159 

output layer also utilizes a new activation function. The value of parameter 𝛾 is 1. 160 

The SMP output by the neural network (fig. 1a) is converted to a logarithmic scale, 161 

which makes it easier to draw WRC and HCF diagrams, and can also reduce the SMP 162 

fitting error in the loss function. The logarithmic scale estimate of soil matrix 163 

potential was used as input to two neural networks to map hydraulic conductivity K 164 

and VSWC. The new activation function makes changes based on the sigmoid 165 

function, which contains some of the properties of the sigmoid function, such as the 166 

output value is positive and ranges from 0-1, and his parameter 𝛾 improves the 167 

fitting performance of the neural network in the arid region. 168 



 

 

 169 

Figure 1. A physical information neural network (PINNs) is employed to estimate the specific 170 

solution of the Richardson-Richards equation (RRE), using a new activation function. The 171 

network comprises three parts, which are used to fit the hydraulic conductivity, soil matric 172 

potential (SMP), and volumetric soil water content (VSWC). The loss function has a 173 

hyperparameter in front of each item to adjust the focus of the fitting. 174 

 175 

To incorporate a priori knowledge of the VG model, an activation function is 176 

introduced to improve the estimation accuracy of hydraulic parameters in the 177 

saturated and arid zones. The activation function is as follows: 178 

 𝜎(𝑧) = 𝑎 (
1

1+𝑒−(𝑧−𝑏)
)
𝑐
 (2) 179 

The parameter 𝑎 may refer to either the saturated hydraulic conductivity or the 180 

saturated water content. The position of the center of symmetry of the S-curve is 181 

controlled by parameter 𝑏. The steepness of the low value region is controlled by 182 

parameter 𝑐. The image of the activation function is shown in Figure 2. 183 
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Figure 2. (a) Illustration of the activation function, (b) Illustration of the activation function in 185 

logarithmic scale. 186 

Integrating multi-source data into existing models remains a challenge in practice, as 187 

it requires complete and accurate data. It is essential to develop a new approach that 188 

can identify multi-dimensional correlations, unify the multi-scale modelling process 189 

and reduce the difficulty of parameter estimation (Karniadakis et al., 2021). The 190 

parameter set of the neural network is solved by minimizing the objective function, 191 

and the loss function is: 192 

 ℒ(𝑾, 𝒃):= 𝛼 ∑  𝑁
𝑖=1 (𝜃 − 𝜃)2 + 𝛽∑  𝑁

𝑗=1 (𝜓̂ − 𝜓)2 + 𝛾∑  𝑀
𝑘=1 (𝑟̂)2 (3) 193 

The loss function comprises of three terms. The first two terms represent the fitting 194 

error of the VSWC and soil SMP, while the third term represents the constraint 195 

imposed by the partial differential equation. The coefficients of the activation function 196 

are represented by 𝛼, 𝛽, and 𝛾.  197 

Other studies on PINNs have also introduced boundary and initial conditions for 198 

PDEs in the objective function. Bandai's experiments have shown that PINNs can fit 199 

the specific solution of RRE and soil hydraulic parameters if a large enough data set 200 

of VSWC time series is provided without introducing boundary conditions and initial 201 

conditions. PINNs use automatic differentiation to calculate the derivatives of partial 202 

differential equations. The residuals of a partial differential equation can be computed 203 

in an arbitrary domain, which means that we can reduce the complexity of the loss 204 

function by controlling the size of the residuals of the partial differential equation. A 205 



 

 

grid that is denser than the sampling points is used, with spatial spacing of 5 cm and 206 

temporal spacing of 0.1 days. Prior to training the PINNs in this study, weight 207 

parameters W were initialized through a uniform distribution, and bias of nodes were 208 

set to zero. Next, these parameters were trained by optimizing the loss function. The 209 

hyperparameters in the loss function are critical to the PINNs because an accurate fit 210 

of the VSWC and SMP is the basis for estimating soil hydraulic parameters. However, 211 

the weights of the physical PDEs constraints are not easy to determine. Since the 212 

physical constraints and fitting errors are of different orders of magnitude, their 213 

impact on the neural network varies greatly. When there are multiple constraints, it is 214 

a challenge to adjust the weight coefficients. The annealing training method based on 215 

gradient learning rate proposed by Wang et al. balances multiple constraints by 216 

controlling the coefficients of the physical PDEs constraints (Wang et al., 2023). In 217 

our work, we draw on this idea to balance two physical constraints. We take the 218 

physical constraint with the smallest order of magnitude as the baseline and adjust the 219 

coefficients so that the orders of magnitude of the VSWC and SMP fitting errors are 220 

the same as the orders of magnitude of the physical constraints. The determination of 221 

the coefficients generally requires multiple rounds of iterations, with the coefficients 222 

of the soil matric potential fitting error doubling at the end of each round of training 223 

until the HCF and the WRC are not smooth. Our first step is running the Adam 224 

optimizer in Pytorch for 120,000 iterations using its default settings and setting the 225 

decay rate to 0.99. We then fine-tune the parameters using the L-BFGS-B algorithm to 226 

minimize the objective function.  227 

To ensure monotonicity of the WRC and HCF, the parameters of the fully connected 228 

layers of the neural networks (b and c) are initialized to small positive numbers, e.g. 229 

0.05. This ensures that the neural networks b and c fit into monotonically increasing 230 

functions and correspond to the physical properties of the soil water movement. 231 

HYDRUS-1D was used to generate the VSWC and SMP. The artificial data were used 232 

to (1) study the adaptive weight loss function algorithms and (2) investigate the 233 



 

 

generalizability of the PINNs. The HYDRUS-1D simulated system dynamics for 25 234 

days covering 100 cm of three different homogeneous soils (loam, sandy loam and 235 

silty loam). The soil column was uniformly discretized at 0.1 cm grid spacing. The 236 

initial VSWC was chosen to vary linearly from 15% to 25% from the top to the 237 

bottom for each depth. The Neumann boundary condition is used as the lower 238 

boundary condition, while the upper boundary condition is the time-varying 239 

atmospheric upper boundary condition. Table 1 displays the VG model parameters for 240 

the three soils used in the numerical simulation. 241 

Table 1. Van Genuchten(VG) model parameters for three soil types. 242 

VG model parameters Silt Loam  loam Sandy loam 

θr [cm3 cm−3] 0.067 0.078 0.065 

n [-] 1.41 1.56 1.89 

Ks [cm day−1] 10.8 24.96 106.1 

α [cm−1] 0.02 0.036 0.075 

θs [cm3 cm−3] 0.45 0.43 0.41 

To assess the PINNs performance, we calculated the relative errors of the true and 243 

predicted SMP, VSWC, soil water flux density (SWFD) and hydraulic conductivity. 244 

We quantized the prediction error over time t ∈ [0, 25] days and spatial domain z ∈ 245 

(-100, 0] cm for all four of them as relative L2 errors defined as: 246 

 𝜖𝛾: =
∑  𝑡∈[0,25] ∑  𝑧∈(−100,0] (𝛾̂(𝑡,𝑧)−𝛾(𝑡,𝑧))

2

∑  𝑡∈[0,25] ∑  𝑧∈(−100,0] 𝛾(𝑡,𝑧)
2

 (4) 247 

To demonstrate the effectiveness of the improved PINNs, we also trained the original 248 

PINNs (i.e. without the new activation function and error adaptation) with the same 249 

training data for comparison. 250 



 

 

4 Results and Discussions 251 

4.1 Neural Network Architecture in Physics-Informed 252 

Neural Networks 253 

  254 

Figure 3. The relative errors ϵ of the (SMP), VSWC, soil water flux density (SWFD) and 255 

hydraulic conductivity (HC) change with different hidden layers and unit numbers of the neural 256 

network. The three neural networks are designed to change simultaneously. The lines represent the 257 

average of three repeats of each net structure. 258 

The number of neural network hidden layers and units in the PINNs with the new 259 

activation function was tested by exploring different combinations of layers and units. 260 

The trend of the relative error ϵ for SMP, hydraulic conductivity, VSWC, and SWFD 261 

for varying numbers of hidden layers and units of the neural networks is shown in Fig. 262 

3. The structure of the three neural networks was changed synchronously.  263 

The relative errors of soil matric potential, volumetric water content, soil water 264 

flux density, hydraulic conductivity, and for the PINNs using the new activation 265 

function do not follow the same trend as the number of cells increases. As the number 266 



 

 

of hidden layers increases, the relative errors of SMP and VSWC increase and then 267 

decrease. The relative error of hydraulic conductivity, on the reverse, decreases and 268 

then increases, while the relative error of soil water flux always increases at a hidden 269 

layer number of 60. When the number of hidden layer units is 10, the relative errors of 270 

SMP and VSWC remain almost unchanged, and the relative errors of hydraulic 271 

conductivity and soil water flux change very little at the beginning and decrease at the 272 

end. When there are 40 hidden layer cells, the relative errors of SMP and VSWC 273 

fluctuate, and the relative errors of hydraulic conductivity and soil water flux decrease 274 

initially and increase at the end, but the minimum mean is not the same as in the 275 

hidden layer. A nonlinear correlation was found between the relative errors of 276 

hydraulic conductivity, SWFD and VSWC and the number of hidden layers. When the 277 

number of hidden layers of soil matric potential is 3, the number of hidden layers of 278 

VSWC is 1, the number of hidden layers of hydraulic conductivity K is 5 and the 279 

number of hidden layers of SWFD is 9, the mean relative error is the lowest. 280 

To enhance the algorithm's robustness, we utilize various random number seeds 281 

to initialize the network and compute the range of relative error variation. We 282 

excluded all network structures when the hidden layer unit was 60, the relative errors 283 

of SMP and VSWC were very unstable when the hidden layer was more than 5. There 284 

was no noticeable improvement in the relative errors when the hidden layer was less 285 

than 5, compared to a hidden layer unit of 40. Reducing the hidden layer number 286 

further demonstrates the benefits of improving the stability of the optimizing. It was 287 

observed that when the hidden layer units are very small, the relative errors in 288 

hydraulic conductivity and SWFD remain large until the number of hidden layers 289 

reaches 9. This is attributed to the fact that the hidden layer units are too small to 290 

represent the non-linear relationships in the dataset. When the hidden layer units of 291 

the neural network were fixed, the relative errors in hydraulic conductivity, VSWC 292 

and SMP were minimal at 3 hidden layers. In summary, the structures of the PINNs 293 

are defined as shown below: neural networks consist of 3 hidden layers and 40 units. 294 



 

 

However, the performance of PINNs using the new activation function is sensitive to 295 

the neural network structure. Therefore, we recommend optimizing the network 296 

structure again after changing the data set or loss function to improve the model's 297 

accuracy. 298 

4.2 Generalization Ability of PINNs 299 

Data-driven algorithms can accurately fit data, but their poor generalization often 300 

leads to inaccurate predictions or a failure to learn the intrinsic relationships within 301 

the data (Shen et al., 2023). The PINNs' generalization capability was evaluated using 302 

synthetic data derived from HYDRUS-1D with the new activation function and 303 

monotonicity constraints. Table 2 displays the relative error for SMP (ϵψ), hydraulic 304 

conductivity (ϵK), VSWC (ϵθ), and SWFD (ϵq). The newly proposed PINNs can be 305 

identified by the small values of the relative error for the soil matric potential ϵψ and 306 

the large values for the VSWC ϵθ. Both models performed well in terms of relative 307 

error for hydraulic conductivity and SWFD. This is mainly due to the soil matric 308 

potential data in the training dataset, which can be well handled by the newly 309 

proposed PINNs, as shown in Figure 1. Thus, the subsequent sections will concentrate 310 

on the outcomes for PINNs using the new activation function. 311 

Table 2. Relative error (mean (± standard deviation)) of PINNs trained from VSWC and SMP for 312 

soil matric potential ϵψ, volumetric water content ϵθ, soil water flux density ϵq and hydraulic 313 

conductivity ϵK. 314 

Relative 

error 
Silt loam Loam Sandy loam 

PINNs with new activation function using VWC and SMP 

ϵ
θ
 1.56(±0.92)×10

-3
 1.25(±0.52)×10

-3
 7.56(±1.26)×10

-4
 

ϵ
ψ
 9.43(±0.03)×10

-1
 9.82(±0.01)×10

-1
 9.95(±0.03)×10

-1
 

ϵ
K
 2.07±1.84)×10

-1
 5.42(±1.08)×10

-1
 2.90(±1.88)×10

-2
 

ϵ
q
 8.01(±2.98)×10

-1
 3.24(±0.34)×10

-2
 1.35(±1.02)×10

-2
 



 

 

PINNs with monotonicity constraints using VWC 

ϵ
θ
 5.86(±0.67)×10

-5
 3.36(±0.49)×10

-5
 4.27(±0.45)×10

-5
 

ϵ
ψ
 3.37(±0.91)×10

1
 7.65(±2.54)×10

2
 9.71(±0.25)×10

-1
 

ϵ
K
 6.32±5.64)×10

-1
 2.38(±0.62)×10

-2
 1.52(±9.86)×10

-2
 

ϵ
q
 1.03(±3.50)×10

-1
 2.16(±4.01)×10

-2
 2.69(±7.65)×10

-2
 

4.2.1 Soil Matric Potential and Volumetric Soil Water Content 315 

Figure 4 illustrates the VSWC predicted by the PINNs for the sandy loam soil 316 

using the new activation function. The training data allowed the PINNs to accurately 317 

capture the actual pattern of soil moisture motivation. However, larger errors were 318 

observed when the initial conditions changed suddenly. This suggests that the neural 319 

networks were unable to capture such drastic changes in soil moisture dynamics. 320 

Following rainfall, the upper boundary conditions change, resulting in predicted 321 

values that are smaller than the true values. This could be due to insufficient data or 322 

the fact that surface soil moisture dynamics are not solely driven by RRE. The soil 323 

matric potential also shows a similar trend, as shown in Figure 5. 324 



 

 

  325 

Figure 4. Simulated and real spatiotemporal volumetric soil water content distributions in sandy 326 

loam. 327 

 328 

  329 

Figure 5. Simulated and real spatiotemporal soil matric potential distributions in sandy loam. 330 



 

 

4.2.2 Soil Water Retention Curves 331 

The study evaluates the ability of PINNs, with a new activation function, to 332 

estimate soil hydraulic properties. The use of moisture and substrate potential data 333 

from different sites to estimate soil water retention curves was one of the original 334 

aims of the paper. As previously stated, the PINNs model with monotonicity 335 

constraints provides inadequate predictions for the WRC at both the near-saturated 336 

and drought scale due to the limited estimation of parent potential. In particular, the 337 

outcomes for low and high VSWC were not good. As Figure 6 shows, the predicted 338 

water retention curves of sandy loam and loam are similar to the actual water 339 

retention curves, whether in arid or saturated areas. The water retention curve 340 

prediction for silty loam soil has the largest error in the near-saturated zone. This may 341 

be due to insufficient data in these ranges or because the special solution of RRE at 342 

the near-saturated is not smooth. Wang et al. (2023) reported similar observations 343 

where the soil matric potential was accurately estimated using VSWC and soil 344 

temperature data through the use of PINNs derived from the coupled 345 

soil-hydrothermal model. 346 

 347 
Fig. 6. Water retention curves (true) for three soils compared to those predicted by PINNs using 348 

the new activation function. WRCs for (a) silt loam, (b) loam, and (c) sandy loam. Grey shaded 349 

areas are confidence intervals taken as the mean plus or minus three times the standard deviation 350 

after 30 replications. 351 



 

 

4.2.3 Hydraulic Conductivity Functions 352 

 353 

Fig. 7. Hydraulic conductivity functions of three soils compared with those predicted by the new 354 

activation function of PINNs. HCFs for (a) silt loam, (b) loam, and (c) sandy loam. Grey shaded 355 

areas are confidence intervals taken as the mean plus or minus three times the standard deviation 356 

after 30 replicates. The lower confidence interval for loam is 2.5 times the standard deviation, 357 

rather than three times, to avoid negative values that would distort the image on the log scale. 358 

The predicted HCFs for the three soils are shown in Figure 7. The estimated hydraulic 359 

conductivity function of the silt loam is similar to the actual hydraulic conductivity 360 

function, whether in dry or saturated areas. The monotonic constraint is insufficient to 361 

represent the strong nonlinearity of HCF and does not provide enough data on the 362 

humidity scale. To address this issue, we introduce a priori saturated hydraulic 363 

conductivity and saturated water content. It is important to note that the prior 364 

knowledge must be within a suitable range, otherwise PINNs convergence will not be 365 

achieved. Sandy loam and loam soils exhibit the greatest error in HCF under dry 366 

conditions. The PINNs using the new activation function can estimate the HCF, 367 

especially in the middle range. However, it is not possible for PINNs to accurately 368 

estimate the HCF at the dry scale. The dry data are concentrated in the surface 5 cm 369 

range, and since the data are sparse, the training data are poorly distributed in this 370 

range and do not help to learn the HCF in the dry range. Depina et al. (2022) found 371 

that hydraulic conductivity in the intermediate range can be estimated from soil matric 372 

potential or VSWC. The method proposed in this paper does not reduce the residuals 373 

of the RRE, but only distributes the residuals uniformly over all the estimated features, 374 

which is shown by the increase in the relative error of the VSWC and the decrease in 375 



 

 

the relative error of the SMP. In order to promote the application of PINNs in the field 376 

of soil moisture dynamics simulation and to adapt the sampling method to the existing 377 

sensor networks, the algorithm provides more optimizable parameters such as 378 

saturated hydraulic conductivity, saturated water content. Compared to other methods 379 

of estimating hydraulic conductivity, the PINNs method has the advantages of being 380 

able to use a priori information about the HCF, such as saturated hydraulic 381 

conductivity. 382 

4.2.4 Soil Water Flux Density 383 

 384 

 385 
Figure 8. Estimated versus true soil water flux density values for (a) silt loam, (b) loam, (c) sandy 386 

loam at four different depths. z = -10 cm, z = -15 cm, z = -45 cm, and z = -85 cm. 387 

The performance of the PINNs framework in estimating SWFD will be tested. Figure 388 

8 presents a comparison between the estimated and true soil water flux density at four 389 

depths (z = -1, -15, -45, -85 cm) in sandy loam. Rapid changes in soil water flux 390 

density and large errors were found near the wetting front and at the surface. Despite 391 



 

 

the relatively high errors for loam and silt loam, the PINNs with the new activation 392 

function adequately represents the pattern of SWFD, as illustrated in Figure 8. 393 

The potential of the PINNs approach to estimate soil evaporation from subsurface soil 394 

measurements in the field is significant. The widespread availability of sensors and 395 

the decreasing manufacturing costs have resulted in the accumulation of a large 396 

amount of usable observational data (collected or generated), which are crucial for 397 

mathematical modelling (Jackson et al., 2008; Kamai et al., 2008). This can be 398 

achieved through continuous measurements of SMP and VSWC using mobile FDR 399 

sensors (Yu et al., 2021) and pipeline robots (Yan et al., 2023), which are becoming 400 

increasingly popular. Therefore, this approach is important for applications in surface 401 

modelling (e.g. Sadeghi et al., 2020) and agricultural engineering (Umutoni & Samadi, 402 

2024). 403 

5 Summary and Conclusions 404 

This paper proposes a new framework that uses Physics-Informed Neural Networks 405 

(PINNs) to estimate soil hydraulic parameters, specifically the WRCs and HCFs, from 406 

limited VSWC and SMP measurements. The saturated hydraulic conductivity was 407 

introduced into the neural network through a parameterized S-type activation function. 408 

Therefore, our framework is more practical for modelling soil moisture dynamics. To 409 

assess the capabilities of the new framework, its comparison with the original PINNs 410 

was carried out. The PINNs were trained using datasets from three different soil 411 

characteristics (loam, sandy loam and silty loam). The generalizability of the 412 

framework, i.e. the ability to estimate WRC, HCF and SWFD, was tested. PINNs with 413 

a new activation function can estimate the true soil water dynamics from various 414 

types of synthetic soil data. In regards to soil water holding curves, PINNs with a new 415 

activation function performs worse in estimating the near-saturated scale of silt loam 416 

and better in estimating the sandy loam and loam. In contrast to WRC, PINNs with 417 

the new activation function can predict the HCF of silt loam well, but performs worse 418 



 

 

on the dry scale. The results suggest that the model estimation accuracy can be 419 

improved by using the new activation function and adding soil matric potential 420 

calibration points in PINNs. This approach has the advantage of not requiring initial 421 

and boundary conditions, and can leverage more prior knowledge.  422 
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