
JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for “Learning to infer

weather states using partial observations”
Jie Chao1,2, Baoxiang Pan2, Quanliang Chen1, Shangshang Yang2,3, Jingnan

Wang2,4, Congyi Nai2,5, Yue Zheng6, Xichen Li2, Huiling Yuan3, Xi Chen2,

Bo Lu7, Ziniu Xiao2

1School of Atmospheric Sciences, Chengdu University of Information Technology, Sichuan, China

2Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

3Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University,

Jiangsu, China

4College of Computer, National University of Defense Technology, Hunan, China

5Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

6Clustertech LTD, Hong Kong, China

7National Climate Center, China Meteorological Administration, Beijing, China

Contents of this file

1. S1 Details of probabilistic diffusion model

2. S2 Parameters of CLIN

3. S3 Model parameter schedule

4. S4 Evaluation metrics

5. Tabel S1 Hyperparameters of Diffusion model

April 11, 2024, 9:17pm

X - 2 :

6. Figures S1 Network architecture of diffusion model

7. Figures S2 The first three EOF modes.

S1. Details of probabilistic diffusion model

Here, we provide detailed mathematical formulations and implementation specifics of

the deployed probabilistic diffusion model. For more information and useful learning

materials, refer to the works of Sohl-Dickstein et al.(2015), Ho et al. (2020), Song et al.

(2020) , Kingma et al. (2021), Ho & Salimans (2022) and Luo (2022).

Diffusion models are probabilistic models that describe the evolution of a stochastic

process over time. In the context of deep learning diffusion models, the diffusion process

and its reverse process are fundamental concepts.

The diffusion process is the forward process through which a model generates data,

typically images, from a simple noise distribution (often Gaussian noise) to the target

distribution. A step-by-step derivation is provided below.

First, we define the following Gaussian process to transform the target distribution

p(x0) to a prior distribution p(xT):

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Here xt∈[1,T] are latent variables with increasing noise level; N is Gaussian distribution;

I is identity matrix; βt is diffusion coefficient, which is pre-defined so that, give large

enough T , p(xT |x0) is drawn close to p(xT), which is x0 agnostic.

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2)

April 11, 2024, 9:17pm

: X - 3

We parameterize the Gaussian encoder with mean µt(xt) =
√
αtxt−1, and variance

Σt(xt) = (1−αt)I, Here αt = 1−βt. Mathematically, encoder transitions are denoted as:

xt =
√
αtxt−1 +

√
1− αtϵt−1 (3)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2 (4)

= . . . (5)

=
√
ᾱtx0 +

√
1− ᾱtϵ (6)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (7)

These assumptions depict a systematic process of adding Gaussian noise to the data input

over time. As we continue to corrupt the data, it gradually transitions until it is entirely

characterized by pure Gaussian noise.

In essence, the reverse process aims to infer the noise distribution that could have

generated the observed data. Similar to the diffusion process, the reverse process is

represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) pθ(x0:T) = p(xT)
T∏
t=1

pθ(xt−1|xt) (8)

Here, Σθ is parameterized as an interpolation between its analytical lower and upper

bounds (Dhariwal & Nichol, 2021). The optimization of µθ involves maximizing the vari-

ational lower bound (ELBO) on the log-likelihood of the training samples (Sohl-Dickstein

et al., 2015; Kingma et al., 2021).

Then, diffusion model can be optimized by maximizing the ELBO, which can be derived

as follows:

April 11, 2024, 9:17pm

X - 4 :

log p(x) = log

∫
p(x0:T)dx1:T (9)

= log

∫
p(x0:T)q(x1:T |x0)

q(x1:T |x0)
dx1:T (10)

= logEq(x1:T |x0)

[
p(x0:T)

q(x1:T |x0)

]
(11)

≥ Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T |x0)

]
(12)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)
∏T

t=2 pθ(xt−1|xt)

q(x1|x0)
∏T

t=2 q(xt|xt−1,x0)

]
(13)

= Eq(x1:T |x0)

[
log

p(xT)pθ(x0|x1)

q(x1|x0)
+ log

T∏
t=2

pθ(xt−1|xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)
]

]
(14)

= Eq(x1|x0) [log p0(x0|x1)] + Eq(xT |x0)

[
log

p(xT)

q(xT |x0)

]
+

T∑
t=2

Eq(xt,xt−1|x0)

[
log

pθ(xt−1|xt)

q(xt−1|xt,x0)

]
(15)

= Eq(x1|x0) [log pθ(x0|x1)]−DKL(q(xT |x0) ∥ p(xT))

−
T∑
t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))] (16)

We now explain the three terms on the right-hand side of the Eq. 16:

• Eq(x1|x0) [log pθ(x0|x1)] represents the expected log-likelihood of the initial data

x0 given the sampled intermediate data x1. For the first step, we have

Eq(x1|x0) [log pθ(x0|x1)] = 0.

• DKL(q(xT |x0) ∥ p(xT)) denotes the KL divergence between the approximate poste-

rior distribution q(xT |x0) and the prior distribution p(xT) at the final time step T.

Where p(xT) ∼ N (0, I), it implies that Eq(xT−1|x0) [DKL(q(xT |xT−1) ∥ p(xT))] = 0

•
∑T

t=2 Eq(xt|x0) [DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))] represents the sum of the expected

KL divergences between the approximate posterior distributions q(xt−1|xt,x0) and the

April 11, 2024, 9:17pm

: X - 5

conditional distributions pθ(xt|xt+1) for each intermediate time step t in the reverse dif-

fusion process.

Given the analysis above, maximizing log p(x) can be approximately achieved by min-

imizing the third term. While minimizing each KL Divergence term individually can be

challenging for arbitrary posteriors, we can leverage Bayes’ rule to simplify the process:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
(17)

=
N (xt;

√
αtxt−1, (1− αt)I)N (xt−1;

√
αt−1x0, (1− ᾱt−1)I)

N (xt;
√
ᾱtx0, (1− ᾱt)I)

(18)

∝ exp

{
−
[
(xt −

√
αtxt−1)

2

2(1− αt)
+

(xt−1 −
√
αt−1x0)

2

2(1− ᾱt−1)
−

(xt −
√
αtx0)

2

2(1− ᾱt)

]}
(19)

= exp

{
−1

2

[
(xt −

√
αtxt−1)

2

1− αt

+
(xt−1 −

√
αt−1x0)

2

1− ᾱt−1

−
(xt −

√
αtx0)

2

1− ᾱt

]}
(20)

= exp

{
−1

2

(
1

(1−αt)(1−ᾱt−1)
1−ᾱt

)[
x2
t−1 − 2

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt

xt−1

]}
(21)

∝ N (xt−1;

√
αt(1− ᾱt−1)xt +

√
αt−1(1− αt)x0

1− ᾱt︸ ︷︷ ︸
µq(xt,x0)

,
(1− αt)(1− ᾱt−1)

1− ᾱt

I)︸ ︷︷ ︸
Σq(t)

(22)

Hence, it is demonstrated that at each step xt−1 ∼ q(xt−1|xt,x0) follows a normal dis-

tribution. We use the KL Divergence between two Gaussian distributions for calculation.

April 11, 2024, 9:17pm

X - 6 :

argmin
θ

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt)) (23)

=argmin
θ

DKL

(
N
(
xt−1;µq,Σq(t)

)
∥N (xt−1;µθ,Σq(t))

)
(24)

=argmin
θ

1

2

[
log

|Σq(t)|
|Σq(t)|

− d+ tr
(
Σq(t)

−1Σq(t)
)
+
(
µθ − µq

)T
Σq(t)

−1
(
µθ − µq

)]
(25)

=argmin
θ

1

2

[(
µθ − µq

)T (
σ2
q (t)I

)−1 (
µθ − µq

)]
(26)

=argmin
θ

1

2σ2
q (t)

[∥∥µθ − µq

∥∥2
2

]
(27)

After optimizing the Diffusion Model, the sampling procedure simplifies to sampling

Gaussian noise from p(xT) and iteratively running the denoising transitions pθ(xt−1|xt)

for T steps to generate a novel x0. In practice, we denote µθ as function of neural network

parameterization for ∇p(xt|x0), which is commonly known as the score function (Y. Song

et al., 2020).

S2. CLIN

In our approach, we merge the acquired climatology prior with station observations

to deduce the posterior probability distribution of the target variable. This allows us

to jointly modify both observed and unobserved regions throughout the denoising steps,

yielding generated samples that are spatially coherent, faithful and adaptive to observation

constraints, and uncertainty-aware. The specific parameters of CLIN are presented in the

following table. S1.

S3. Model parameters schedule

We trained the neural network on the NVIDIA Tesla V100 32GB GPU using CUDA

version 12.3. The neural network architecture details of the diffusion model are illustrated

April 11, 2024, 9:17pm

: X - 7

in Fig. S1. Typical hyperparameter configurations for diffusion models are often derived

from the(Ho & Salimans, 2022).

The specific hyperparameters of the model are presented in the following table. S1.

we embed the time information, and stack the time embedding as an additional channel

to all UNet blocks. Each contracting block consists of a long sequence of {C3∗3 + N +

ReLU}3 operations and a short sequence of {C1∗1}1 operations, concatenated as a residual

block. Here, Cn∗n is convolution layer with kernel receptive field of size n ∗ n. N is group

normalization, ReLU is rectified linear unit function. Each expand block consists of a

long sequence of {R2+C3∗3+N+ReLU}3 operations and a short sequence of {R2, C1∗1}1

operations, concatenated as a residual block. Here, Rn resizes the data by n times using

linear interpolation. We begin with a channel size of 64 and double/shrink the channel

size by 2 along each contracting/expanding block.

S4. Evaluation metrics

S4.1 Pearson correlation coefficient (corr)

The Pearson correlation coefficient (corr) between prediction x̂ and observation x is

calculated as follows:

corr =

∑n
i=1(x̂i − ¯̂x)(xi − x̄)√∑n

i=1(x̂i − ¯̂x)2 ·
∑n

i=1(xi − x̄)2
(28)

S4.2 Root mean square error(RMSE)

The root mean square error (RMSE) between prediction x̂ and observation x is calcu-

lated as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(29)

April 11, 2024, 9:17pm

X - 8 :

S4.3 Empirical Orthogonal Function

Empirical Orthogonal Function (EOF) analysis, also known as Principal Component

Analysis (PCA) in some contexts, is a widely used statistical method in various fields,

including meteorology, oceanography, climatology, and geophysics.

It is employed to analyze and extract the dominant patterns of variability present in a

multivariate dataset, such as spatial patterns in climate data or in oceanographic data.

The detailed calculation method for EOF is based on the PrincipalComponents function

in Mathematica.

S4.4 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS test) is a statistical method used to compare the

empirical cumulative distribution function (CDF) of a sample dataset with a reference

probability distribution or another sample dataset. It is particularly useful for assessing

whether the two datasets are drawn from the same underlying distribution or if they differ

significantly.

The KS test operates by computing the maximum difference (or maximum deviation)

between the two cumulative distribution functions. This maximum difference, often de-

noted as the KS statistic (D), represents the largest vertical distance between the empirical

CDF and the theoretical (or reference) CDF. The KS statistic is then compared against

critical values from the Kolmogorov-Smirnov distribution, which depends on the sample

size and the significance level chosen for the test.

The specific computation method for the Kolmogorov-Smirnov test is derived from

Mathematica’s KolmogorovSmirnovTest function.

S4.5 Power spectrum density

April 11, 2024, 9:17pm

: X - 9

The radial averaged power spectrum density (PSD) is a quantitative measure used in

various fields of science and engineering, including signal processing, optics, and geo-

physics. It provides valuable insights into the distribution of power across different spa-

tial frequencies in a given signal or image. In this paper, the PSD is calculated by first

computing the Fourier transform of the signal or image to obtain its frequency domain

representation. The power spectrum density is then computed as the squared magnitude

of the Fourier transform. The PSD further averages the power spectrum density over con-

centric circles or spherical shells centered at the origin, hence the term ”radial averaged.”

This averaging process is performed to capture the isotropic characteristics of the signal

or image, ensuring that contributions from all directions are considered equally.

The PSD is particularly useful for analyzing signals or images with rotational symmetry

or spatial periodicity. By averaging the power spectrum density radially, it becomes

possible to discern patterns or structures that are not readily apparent in the original

signal or image. Additionally, the PSD can be used to quantify the dominant spatial

frequencies present in the signal or image, providing valuable information for further

analysis or interpretation.

In short, the radial averaged power spectrum density offers a comprehensive view of

the spatial frequency content of a signal or image, facilitating insights into its underlying

structure and characteristics.

The specific calculation method for the PSD is derived from the pySTEPS library in

Python.

References

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis.

April 11, 2024, 9:17pm

X - 10 :

Advances in neural information processing systems , 34 , 8780–8794.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances

in neural information processing systems , 33 , 6840–6851.

Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint

arXiv:2207.12598 .

Kingma, D., Salimans, T., Poole, B., & Ho, J. (2021). Variational diffusion models.

Advances in neural information processing systems , 34 , 21696–21707.

Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv preprint

arXiv:2208.11970 .

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsu-

pervised learning using nonequilibrium thermodynamics. In International conference

on machine learning (pp. 2256–2265).

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv

preprint arXiv:2010.02502 .

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020).

Score-based generative modeling through stochastic differential equations. arXiv

preprint arXiv:2011.13456 .

April 11, 2024, 9:17pm

: X - 11

Table S1. Hyperparameters of Diffusion model

Hyperparameter Setting Parameter

Learning Rate 10−4 α2
t = 1− σ2

t = 1
1+e−λt

Batch Size 64 λt = −2 log tan(at+ b)

Channel 64 b = arctan(e−
λmax

2)

Optimizer Adam a = arctan(e−
λmin

2)− b

Number of Iterations 1000 t = i
1000

,Where i = 0, 1, 2, . . . , 1000

λmin -20 embedding(t) = [sin(2πωt); cos(2πωt)]

λmax 20 ω ∼ N (0, I)

April 11, 2024, 9:17pm

X - 12 :

Noise

Loss

NoiseT
preprocess

Scale

Rescale

λ
λProcess

contract_1

thread_F_1

expand_1

contract_2

thread_F_2

expand_2

contract_3

thread_F_3

expand_3

contract_4

thread_F_4 expand_4

thread_B_0

thread_B_1

thread_B_2
thread_B_3

postproce..

thread_F_0

Loss

thread_B_4ubase

λ_B_0

λ_B_1

λ_B_2

λ_B_3

λ_B_4

λ_F_0

λ_F_1

λ_F_2

λ_F_3

λ_F_4

120
120

1× 120× 120

256

64
60
60

64× 120× 120

128
30
30

128× 60× 60

256
15
15

256× 30× 30

512
7
7

512× 15× 15

64× 120× 120

64× 60× 60

128× 30× 30
256× 15× 15


1
120

120

64× 120× 120

64
120

120

64× 120× 120

64
60

60

128
30

256
15

7

64× 120× 120

64× 60× 60

128× 30× 30

256× 15× 15

512× 7× 7 512× 7× 7

64× 120× 120

64× 60× 60

128× 30× 30

256× 15× 15

512× 7× 7

64× 120× 120

64× 60× 60

128× 30× 30

256× 15× 15

512× 7× 7

768
768

768
768

768

76
8

76
8

76
8

76
8

768

MS

×

+

+

+

+

+

+

+
+

+

+

Figure S1. Network Architecture of diffusion model. Each contracting block consists

of a long sequence of {C3∗3 + N + ReLU}3 operations and a short sequence of {C1∗1}1

operations, concatenated as a residual block. Here, Cn∗n is convolution layer with kernel

receptive field of size n∗n. N is group normalization, ReLU is rectified linear unit function.

Each expand block consists of a long sequence of {R2 + C3∗3 + N + ReLU}3 operations

and a short sequence of {R2, C1∗1}1 operations, concatenated as a residual block.

April 11, 2024, 9:17pm

: X - 13

ERA5 EOF1 (90%)a ERA5 EOF2 (2.7%)b ERA5 EOF3 (2%)c

CLINERA5 EOF1 (91%)d CLINERA5 EOF2 (2.6%)e CLINERA5 EOF3 (1.5%)f

FGOALS EOF1 (83.6%)g FGOALS EOF2 (5.1%)h FGOALS EOF3 (2.2%)i

CLINFGOALS EOF1 (83.9%)j CLINFGOALS EOF2 (4.9%)k CLINFGOALS EOF3 (2.1%)l

Figure S2. The first three EOF modes. ERA5 (a-c), Clin ERA5 (d-f), FGOALS (g-i)

and CLIN FGOALS (j-l).

April 11, 2024, 9:17pm

