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Key points 25 

 Statewide, exposure to wildfire PM2.5 is associated with increased odds of respiratory 26 

acute care utilization in California. 27 

 The wildfire PM2.5-health association varies spatially across air basins, counties, and ZIP 28 

Code Tabulation Areas. 29 

 Areas with higher proportions of Black and Pacific Islander populations and less 30 

affluence had worse wildfire PM2.5-related outcomes.  31 
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Abstract (word limit 250) 32 

Wildfire smoke fine particles (PM2.5) are a growing public health threat as wildfire events 33 

become more common and intense under climate change, especially in the Western United 34 

States. Studies assessing the association between wildfire PM2.5 exposure and health typically 35 

summarize the effects over the study area. However, health responses to wildfire PM2.5 may vary 36 

spatially. We evaluated spatially-varying respiratory acute care utilization risks associated with 37 

short-term exposure to wildfire PM2.5 and explored community characteristics possibly driving 38 

spatial heterogeneity. Using ensemble-modelled daily wildfire PM2.5, we defined a wildfire 39 

smoke day to have wildfire-specific PM2.5 concentration ≥15 µg/m
3
. We included daily 40 

respiratory emergency department visits and unplanned hospitalizations in 1,396 California ZIP 41 

Code Tabulation Areas (ZCTAs) and 15 census-derived community characteristics. Employing a 42 

case-crossover design and conditional logistic regression, we observed increased odds of 43 

respiratory acute care utilization on wildfire smoke days at the state level (odds ratio [OR] = 44 

1.06, 95% confidence interval [CI]: 1.05, 1.07). Across air basins, ORs ranged from 0.88 to 1.57, 45 

with the highest effect estimate in San Diego. A within-community matching design and spatial 46 

Bayesian hierarchical model also revealed spatial heterogeneity in ZCTA-level rate differences. 47 

For example, communities with a higher percentage of non-Hispanic Black or Pacific Islander 48 

residents had stronger wildfire PM2.5-outcome relationships, while more air conditioning and tree 49 

canopy attenuated associations. We found an important heterogeneity in wildfire smoke-related 50 

health impacts across air basins, counties, and ZCTAs, and we identified characteristics of 51 

vulnerable communities, providing evidence to guide policy development and resource 52 

allocation. 53 

Keywords: 54 

Wildfire, smoke, acute care utilization, spatial heterogeneity, vulnerability, environmental justice55 
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Plain language summary (word limit 200) 56 

Wildfire smoke is a growing public health threat, one becoming more pressing as climate change 57 

progresses. People are exposed to different levels of wildfire smoke. People also have different 58 

abilities to protect themselves from smoke exposure based on their job, housing quality, or other 59 

factors. In addition, people have different physiological responses to wildfire smoke. Therefore, 60 

the relationship between wildfire smoke and health could vary across the state of California. We 61 

conducted a study using modeled daily wildfire smoke fine particle concentrations and daily 62 

respiratory acute care utilizations from 2006-2019 in California. We estimated area-specific 63 

wildfire smoke and acute care utilization associations at state, air basin, county, and ZIP Code 64 

Tabulation Areas levels. We found different associations across the state, with the strongest 65 

association in San Diego air basin. San Francisco Bay air basin had the highest number of acute 66 

care utilizations attributable to wildfire smoke due to their large population. We identified 67 

several community characteristics that may have explained the observed spatial differences, 68 

including higher proportions of Black and Pacific Islander populations and less community 69 

affluence. Our findings support the allocation of scarce resources to areas and communities more 70 

vulnerable to wildfire smoke to improve population health in a changing climate.   71 
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1 Introduction 72 

Wildfire PM2.5 is a growing threat to public health. Drier conditions and warmer 73 

temperatures in the Western United States (US) contribute to wildfire events that are more 74 

common, intense, and expansive in scope (Abatzoglou, 2013; Littell et al., 2009; Mueller et al., 75 

2020; Westerling et al., 2006). The resulting wildfire PM2.5 has increased overall trends in 76 

ambient air pollution, counteracting policy efforts to improve air quality (Burke et al., 2023; 77 

Ford et al., 2018). Wildfire PM2.5 can infiltrate the lungs and precipitate respiratory events 78 

through inflammation and oxidative stress (Xing et al., 2016). In previous epidemiological 79 

studies, exposure to wildfire smoke has been linked to a variety of adverse health effects, 80 

particularly for respiratory conditions (Aguilera et al., 2020, 2021; Gould et al., 2024; Kondo et 81 

al., 2019; Reid & Maestas, 2019). Recent toxicologic and epidemiologic studies found that 82 

wildfire PM2.5 can have a higher adverse health impact on the pulmonary system than PM2.5 from 83 

other sources (Aguilera et al., 2021; Kim et al., 2018; Wegesser et al., 2009), and disregarding 84 

the differential dose-response of wildfire PM2.5 led to an underestimation of PM2.5 related health 85 

burden (Darling et al., 2023), which warrants independent studies of wildfire PM2.5 health 86 

impacts. 87 

Wildfire PM2.5 concentrations vary across space and time, and so do the corresponding 88 

health effects. Proximity to wildfires, wind direction, and social factors determine levels of 89 

wildfire PM2.5 exposure (Casey et al., 2023; Reid & Maestas, 2019). For example, in the past few 90 

years, several cities experienced the worst 24-hour average PM2.5 levels recorded on Earth 91 

because of nearby wildfires (Masters, 2018; Osaka, 2022). Additional spatially-varying factors 92 

including meteorologic and topographic conditions such as the Santa Ana winds (Gershunov et 93 

al., 2021) may shape the spatial distribution of wildfire PM2.5 and health outcomes (Leibel et al., 94 

2020). Furthermore, the toxicity of wildfire PM2.5 could change across space as the PM2.5 ages 95 

when traveling (O’Dell et al., 2020). Few studies have accounted for the spatial dependence in 96 

wildfire PM2.5 exposure on health and those that did focused on a single wildfire event affecting 97 

a small geographical area (i.e., San Diego air basin) (Aguilera et al., 2020) or only accounted for 98 

spatial autocorrelation among areas closely located(Reid et al., 2016). Evaluating how health 99 

effects related to wildfire PM2.5 are distributed  across larger geographical areas involving more 100 

wildfire events could inform future mitigation efforts to target specific areas and shape 101 

regulations to better prepare for wildfire PM2.5-related health burden.  102 
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Community characteristics like socioeconomic status and racial/ethnic composition can 103 

drive spatial differences in the health impacts of wildfire PM2.5 through both exposure disparities 104 

and differential response. For example, due to historical discriminatory practices, disparities in 105 

housing quality exist such that communities of color tend to have lower-quality, substandard 106 

housing (Hernández & Swope, 2019; Jacobs, 2011). Given wildfire PM2.5's ability to easily 107 

infiltrate the home (Mendoza et al., 2021), communities of color may be more exposed to 108 

wildfire PM2.5. Differences in community characteristics could also lead to spatially varying 109 

physiological response and behavioral adaptations towards wildfire PM2.5. Lower-income 110 

communities have more constraining choices to protect themselves from wildfire PM2.5 (Burke et 111 

al., 2022). Minoritized groups with worse baseline health conditions due to social 112 

marginalization and systemic racism will likely have worse health responses to wildfire PM2.5 113 

(Berberian et al., 2022; Smith et al., 2022). Moreover, the effects of wildfire PM2.5 may be worse 114 

in communities that already experience a disproportionately high burden of other environmental 115 

exposures due to the potential synergistic effects of compound exposures (C. Chen et al., 2023). 116 

Taken together, there is a need for further research on community characteristics as drivers of the 117 

spatially varying health effects of wildfire PM2.5 (Marlier et al., 2022).  118 

Here, we aimed to investigate the spatially-varying relationship between wildfire PM2.5 119 

exposure and respiratory acute care utilizations and to examine whether various community 120 

characteristics explained the observed spatial heterogeneity in impact of wildfire PM2.5 on 121 

respiratory acute care utilization. We used ZIP Code Tabulation Area (ZCTA)-level ensemble-122 

modelled daily wildfire PM2.5 concentrations and daily respiratory acute care utilizations in 123 

California from 2006-2019 to estimate spatially-varying health effects across four spatial units: 124 

state, air basin, county, and ZCTA. We also examined community vulnerability factors of such 125 

health effects at the ZCTA level. 126 

 127 

2 Materials and Methods 128 

2.1 Data sources and study population 129 

We restricted all analyses to 1,396 ZCTAs in California satisfying two criteria: 1) having 130 

a population ≥1,000 in the 2010 US Decennial census for statistical power consideration 131 

(Bureau, 2021a); and 2) having at least one wildfire smoke day during the study period (2006-132 
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2019). The second criterion was a requirement for this study because unexposed ZCTAs do not 133 

contribute information to the case-crossover or within-community matched designs (Mittleman 134 

& Mostofsky, 2014; Schwarz et al., 2021). We chose ZCTA as the main spatial unit in our 135 

analyses because of the spatial resolution of health outcome.  136 

2.1.1 Wildfire smoke day 137 

We utilized a previously developed time-series dataset for daily wildfire-specific PM2.5 138 

concentration at the ZCTA level (Aguilera et al., 2023) to identify smoke days. Briefly, Aguilera 139 

et al. (2023) first generated the ZCTA-specific daily PM2.5 concentrations (all sources) from a 140 

stacked ensemble model using several data-adaptive algorithms and many predictors (e.g., air 141 

monitor data, satellite-derived aerosol properties, meteorological conditions, and land-use 142 

information). Then, they identified ZCTA-days exposed to smoke plumes using validated NOAA 143 

Hazard Mapping Systems (HMS) products. Next, they applied a chained random forest algorithm 144 

to impute counterfactual non-wildfire PM2.5 concentrations in ZCTA-days with wildfire smoke 145 

(expected PM2.5 concentrations in the absence of the smoke) (Aguilera et al., 2023). The 146 

wildfire-specific PM2.5 is the difference between the estimated daily PM2.5 concentrations from 147 

the ensemble model and the imputed non-wildfire smoke PM2.5 concentrations in each ZCTA. 148 

For each ZCTA, we defined a wildfire smoke day as a day with wildfire-specific PM2.5 149 

concentration ≥15 µg/m
3
, a threshold based on the World Health Organization guideline for 24-150 

hour PM2.5 (Organization, 2021). 151 

2.1.2 Health outcomes 152 

We used the Patient Discharge Data and Emergency Department Data collected by the 153 

California Department of Health Care Access and Information (CA.gov, 2023). This dataset 154 

contains all acute care utilizations that are not prearranged in the general population of 155 

California, including unscheduled hospitalizations and emergency department visits. Emergency 156 

department visits that led to hospitalizations were recorded as unscheduled hospitalizations only. 157 

For each ZIP code, we identified daily respiratory acute care utilizations with primary diagnosis 158 

codes recorded as diseases of the respiratory system (see the list of included International 159 

Classification of Diseases codes in supplementary Text S1). The ZIP code was based on the 160 

patients’ residential address at the time of the visit. Since the US Census Bureau created ZCTAs 161 
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to represent populated areas of the ZIP code service area, with the latter being a sum of service 162 

routes by the United States Postal Service, we treated them as the same in analysis and used 163 

ZCTA in the remainder of this manuscript.  164 

2.1.3 Community characteristics 165 

To explore whether the effects of wildfire smoke days varied by community 166 

characteristics, we used 15 ZCTA-level variables. Communities of color have a greater risk for 167 

wildfire-related health outcomes possibly due to disproportionate cumulative environmental 168 

burden and systemic discrimination (Berberian et al., 2022), so we obtained the proportions of 169 

self-reported race/ethnicity (separate proportions of non-Hispanic white, Black, Asian, American 170 

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Hispanic residents) 171 

from the 2010 US Decennial Census. We also collected population density from the same data 172 

source (2010 Census, 2023). Additional variables were obtained from the Public Health Alliance 173 

of Southern California Healthy Places Index report version 3.0 (Healthy Places Index, 2023; 174 

Maizlish et al., 2019), which are mostly based on averages of the American Community Survey 175 

data from 2015 to 2019. Included variables are the proportion of employment among those ages 176 

20 to 64, the proportion of 25 and older with a bachelor’s degree or higher, the proportion of 177 

insured among those aged 18-64, the proportion of the population with an income that is greater 178 

than 200% of the federal poverty level, per capita income in the US. dollars, the percentage of 179 

households with access to an automobile, and the population-weighted percentage of area with 180 

tree canopy. We also obtained the ZCTA-level percentage of households with access to central 181 

air conditioning (A/C) from the California Residential Appliance Saturation Study survey 182 

(KEMA, Inc., 2010) because air conditioning access may buffer against air pollution exposure 183 

(Liang et al., 2021). Table S2 provided detailed descriptions and sources for each variable of 184 

community characteristics. All variables other than race/ethnicity and population density were 185 

coded such that a higher value corresponds to a higher proportion of economically advantaged 186 

subpopulations. 187 

2.2 Statistical analyses 188 

We estimated the health impacts of wildfire PM2.5 concentrations on respiratory acute 189 

care utilizations at four geographical levels: state, air basin, county, and ZCTAs. The California 190 
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Air Resources Board designates 15 air basins, geographies with distinct meteorological 191 

conditions to regionally distribute resources to address emissions. Each air basin contains 192 

between one and 11 counties (California Air Resources Board, 2023). We assigned ZCTAs to a 193 

county and an air basin based on the location of their population-weighted centroids. Counties 194 

and air basins with no ZCTAs that had a population ≥ 1000 and experienced a wildfire smoke 195 

day were excluded from analyses (Figure 1). In meta-regression to investigate the influence of 196 

community characteristics on ZCTA-specific effect estimates, we further excluded 100 ZCTAs 197 

without complete community characteristics data. All analyses were conducted in R version 198 

4.1.0 (R Core Team, 2021) and the analytic code is available at GitHub: 199 

https://github.com/benmarhnia-lab/cal_wildfire_spatial.git. 200 

 201 

 202 

Figure 1. Flowchart of the California study population and exclusion criteria (black boxes) and 203 

method utilized in each set of analyses (blue boxes).  204 

*
For analysis of air conditioning prevalence, we further excluded 274 ZCTAs (1122 in meta-205 

regression) due to data missingness. 206 
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2.2.1 Case-crossover design for health analyses at state-, air basin-, and county-level 207 

We implemented the time-stratified case-crossover design to evaluate the effects of 208 

wildfire PM2.5 on daily respiratory acute care utilization at the state level, air basin level, and 209 

county level (Maclure, 1991; Mittleman, 2005). In the time-stratified case-crossover design, we 210 

matched each day when an acute care utilization occurred (case) to other days of the same 211 

weekday during other weeks of the same month in the same ZCTA (controls). This study design 212 

compared exposures of a case to themselves at different times and accounts for individual-level 213 

confounders (e.g., age, race/ethnicity and sex) and temporal trends of the exposure beyond a 214 

month (Maclure, 1991; Mostofsky et al., 2018). For state-level analysis, we ran a weighted 215 

conditional logistic regression to account for the matching procedure and included matched case 216 

and control sets from all 1,396 ZCTAs to estimate the odds ratio (OR) of exposure to wildfire 217 

smoke and respiratory acute care utilizations, with weight equal to the number of acute care 218 

utilizations in the case day. For air basin-level and county-level analyses, we ran the same 219 

conditional logistic regressions using only the matched sets in ZCTAs whose population-220 

weighted centroids fall within the corresponding air basin or county. These stratified analyses 221 

assume that wildfire smoke has the same effect across all ZCTAs within the same air basin or 222 

county. We used the “survival” package for conditional logistic regression (Therneau et al., 223 

2023).  224 

To incorporate the total acute care utilization counts during wildfire smoke days and 225 

provide estimates of the health burden, we calculated the population attributable number of acute 226 

care utilizations due to wildfire PM2.5 during the study period at the county, air basin, and state 227 

levels. For each geographical area, we calculated the population attributable number as the 228 

product of area-specific attributable fraction (one minus the inverse of area-specific OR) (Lash et 229 

al., 2021) and the area-specific total number of acute care utilizations among all wildfire smoke 230 

days during the study period. 231 

2.2.2 Within-community matched design coupled with spatial Bayesian hierarchical model 232 

for ZCTA-level health analyses 233 

To explore finer scale spatially varying effects, we used a previously developed within-234 

community matched design to estimate the ZCTA-specific effect of wildfire PM2.5 on the risk of 235 

daily respiratory acute care utilization (C. Chen et al., 2023). Specifically, we identified matched 236 
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controls for each day exposed to wildfire smoke as non-wildfire smoke days of the same year 237 

and ZCTA, and within the window of 30 calendar days before or after the wildfire smoke day. 238 

We excluded days within the window of 3 calendar days before or after any wildfire smoke day 239 

from the controls to avoid spillover effects from other wildfire days. To estimate rate differences, 240 

we calculated the difference between the acute care utilization rate on the exposed case day and 241 

the weighted averages of acute care utilization rates among non-exposed control days. Acute care 242 

utilization rates on exposed case days were the count of acute care utilizations divided by ZCTA 243 

population size from the 2010 US Decennial Census. Weighted averages for non-exposed control 244 

days were weighted acute care utilization rates based on inverse temporal distance to exposed 245 

day (i.e., one divided by number of days to the matched exposed day). We used the average rate 246 

difference of all exposed days within a ZCTA to represent the ZCTA-specific rate difference and 247 

scaled the rate difference to per 100,000 person-day.  248 

Since ZCTAs closer together might exhibit similar effects from a wildfire smoke day 249 

compared to ZCTAs farther away, we used a spatial Bayesian hierarchical model (BHM) to 250 

leverage this spatial autocorrelation and increase the precision of our rate difference estimates 251 

(Schwarz et al., 2021). We included a covariance structure to leverage this spatial autocorrelation 252 

across ZCTAs and used an empirical semivariogram to identify the shape and starting values of 253 

the covariance structure (spherical shape and 2, 16, and 8 for sill, nugget, and range parameters 254 

respectively) (Bivand et al., 2013). We also used flat priors to introduce minimal prior 255 

information into the Bayesian model: inverse gamma distribution with scale and shape equal to 256 

0.001 for the sill and nugget parameters, and uniform distribution from 0.001 to 6 for the range 257 

parameter. We used 10,000 Monte Carlo Markov chain samples with 75% burn-in to estimate the 258 

ZCTA-specific rate differences after spatial pooling. Additionally, we calculated the signal-to-259 

noise ratio to represent the precision of the estimates, which is equal to the ratio between the 260 

mean of the rate differences in the recovered samples and the corresponding standard deviation. 261 

The signal-to-noise ratio allows us to have a mappable measure of statistical precision and values 262 

higher than 2 are considered precise. We used the “spBayes” package in R for the spatial BMH 263 

(Finley et al., 2015). 264 
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2.2.3 Effect modification by community characteristics at the ZCTA level 265 

We evaluated potential effect modification by community characteristics on the effect of 266 

a wildfire smoke day on acute care utilization at the ZCTA level using meta-regression. For each 267 

community characteristic, which was selected a priori, we ran a meta-regression of the pooled 268 

ZCTA-specific rate difference on the community characteristic. To preserve statistical power, we 269 

excluded 100 ZCTAs without compete data for 14 community characteristics other than A/C 270 

prevalence, and we excluded 274 ZCTAs for meta-regression of the A/C prevalence. Our 271 

estimates are reported as rate difference per interquartile range increase of the community 272 

characteristic. We used the “meta” package for meta-regression (Balduzzi et al., 2019). 273 

2.3 Sensitivity analyses 274 

Since atmospheric aridity might affect the probability of wildfire occurrence and ambient 275 

temperature is a known risk factor for respiratory acute care utilization, we conducted sensitivity 276 

analyses for the state-level case-crossover analyses by including two forms of daily ambient 277 

temperature as a linear term or a natural cubic function with six degrees of freedom. We 278 

calculated daily ambient temperature at the population-weighted centroid of each ZCTA based 279 

on an existing 4km×4km temperature surface (Daly et al., 2008). We also evaluated the 280 

individual 1-day lagged effect of wildfire smoke on acute care utilization in a case-crossover 281 

analysis. 282 

To evaluate the robustness of the within-community matched design and spatial BHM, 283 

we conducted a sensitivity analysis using informative priors  employed in previous studies for 284 

the sill and nugget in the spatial BHM, which are inverse gamma distributions (2 for shape and 285 

1/starting value for scale) (C. Chen et al., 2023). This sensitivity analysis tested the robustness of 286 

the spatial BHM towards prior specification and the informative priors used here give more 287 

weight to our interpretation of the empirical semivariogram while the flat priors in main analysis 288 

were more data-driven. We also used community-level socioeconomic information from the 289 

Healthy Places Index report version 2.0 in the meta-regression, which is based on averages of 290 

2011 to 2015, earlier than the averages of 2015 to 2019 in the main analysis (Delaney et al., 291 

2018).  292 
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3 Results  293 

3.1 Characteristics of ZCTAs, wildfire smoke days, and respiratory acute care utilizations 294 

Our study spanned 2006-2019 and included 1,396 California ZCTAs (99.1% of 295 

California population) that had a population ≥1,000 people and experienced at least one wildfire 296 

smoke day (wildfire PM2.5 concentrations ≥ 15 µg/m
3
). In total, we observed 40,065 wildfire 297 

smoke ZCTA-days in the 1,396 ZCTAs (0.6% of all ZCTA-days) during the study period. The 298 

median number of ZCTA wildfire smoke days was 17 (1
st
 and 3

rd
 quartiles: 6 and 43), with 299 

higher numbers in the Central Valley and Northern California (Figure 2). Most of the wildfire 300 

smoke days occurred between June and November (96.7%), with more wildfire smoke days in 301 

2007, 2008, 2017 and 2018 (Figure S1). We observed 18,049,797 non-scheduled respiratory 302 

acute care utilizations in the study area between 2006 and 2019, with 75,175 occurring in 303 

wildfire smoke days. 304 

 305 
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Figure 2. Spatial distribution of total ZCTA-level wildfire days in septiles between 2006-2019 306 

among 1,396 ZCTAs included in the study. We considered wildfire days to be days with wildfire 307 

PM2.5 concentrations ≥ 15 μg/m
3
. 308 

3.2 Spatial heterogeneity of wildfire smoke day effects 309 

We first conducted a state-level analysis that did not consider spatial heterogeneity and 310 

observed increased odds of respiratory acute care utilizations on wildfire smoke days (OR = 311 

1.06, 95% confidence interval (CI): 1.05, 1.07), corresponding to 4122 (95% CI: 3491, 4747) 312 

counts of acute care utilizations attributed to wildfire smoke between 2006 and 2019 (Table S1). 313 

We then conducted three analyses considering spatial heterogeneity. In our air basin-level 314 

analysis, the median OR point estimate was 1.09 (minimum and maximum: 0.88, 1.57) across 315 

the 15 air basins (Table S1). We observed higher point estimates in San Diego as well as Great 316 

Basin Valley, and lower point estimates in Salton Sea and North Central Coast (Figure 3). After 317 

incorporating total acute care utilization counts during wildfire smoke days, air basins 318 

experienced the highest acute health burden are San Francisco Bay and Sacramento Valley, with 319 

1616 (95% CI: 1325, 1901) and 798 (95% CI: 490, 1099) counts of acute care utilizations 320 

attributed to wildfire smoke between 2006 and 2019, respectively (Figure S2 and Table S1). In 321 

our county-level analysis, the median point estimate for ORs was 1.06 (minimum and maximum: 322 

0.45, 1.57) across 57 counties (Table S1). The direction of point estimates for air basins were 323 

similar to those in their respective counties with a few exceptions (Kings County in the San 324 

Joaquin air basin, Plumas County in Mountain Counties air basin) (Figure S3). San Diego 325 

County and Los Angeles County experienced the highest acute care utilizations attributed to 326 

wildfire smoke between 2006 and 2019 (Figure S4). 327 

In the third analysis, we used a within-community matched design coupled with a spatial 328 

Bayesian hierarchical model to assess spatial heterogeneity at the ZCTA level. We observed the 329 

median point estimates for rate differences was -0.07 (minimum and maximum: -19.87, 29.61) 330 

across 1,396 ZCTAs after accounting for spatial autocorrelation. We observed more spatial 331 

heterogeneity in the ZCTA-level point estimates than across air basin or county, with higher and 332 

more precise values observed in coastal metropolitan areas of San Diego, Mojave Desert, and 333 

Great Basin Valleys, and lower and more precise values observed in the Salton Sea, North Coast 334 

and Central Coast (Figure S5).  335 
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 336 

Figure 3. The air basin specific effect estimates (odds ratio) of wildfire smoke day on same-day 337 

respiratory acute care utilization, 2006-2019. Left: spatial distribution of the point estimates; 338 

Right: point estimates and 95% confidence intervals. We employed conditional logistic 339 

regressions in a time-stratified case-crossover design, matching on ZCTA, day of week, month, 340 

and year. 341 

3.3 Effect modification of wildfire smoke day effects by community characteristics 342 

We evaluated effect modification by community characteristics as measured by 14 343 

variables in 1,296 ZCTAs with rate difference and complete community characteristics (Figure 344 

1). Analysis of A/C prevalence was only available in 1,122 ZCTAs. We found that a higher 345 

proportion of Black residents and Pacific Islander residents was associated with higher rate 346 

differences for respiratory acute care utilizations between wildfire smoke days and non-wildfire 347 

smoke days. ZCTAs with a higher proportion of white residents and Asian residents were 348 

associated with lower rate differences (Figure 4). Communities with a higher proportion of 349 

economically advantaged subpopulations were associated with lower rate differences for 350 

respiratory acute care utilizations between wildfire and non-wildfire smoke days. Effect 351 

modification was more pronounced for proportions of automobile ownership, tree canopy, and 352 

A/C prevalence (Figure 4).  353 
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3.4 Sensitivity analyses 354 

At the state level, adding daily ambient temperature as a potential confounder in the 355 

evaluation of wildfire smoke day effect did not meaningfully change effect estimates, regardless 356 

of the form of temperature in the model (linear or nonlinear) (Figure S6). Our ZCTA-specific 357 

effect estimates were also robust to the choice of priors in spatial BHM (Figure S7). The effect 358 

modification results did not change meaningfully when utilizing ZCTA-level sociodemographic 359 

information from earlier years (2011-2015) among 1,235 ZCTAs (Figure S7). 360 

 361 

Figure 4. Effect modification of community characteristics on the effect of wildfire smoke (i.e., 362 

days with wildfire PM2.5 ≥ 15 μg/m
3
) on same-day respiratory acute care utilization rate among 363 

1,296 CA ZCTAs. Race/ethnicity data was obtained from the 2010 US Decennial Census and 364 

socioeconomic information was obtained from the Healthy Place Index 3.0, and air conditioning 365 

was obtained from the California Residential Appliance Saturation Study survey. 366 

*We included 1,122 ZCTAs for % air conditioning meta-regression because of data missingness. 367 
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 368 

4 Discussion 369 

It is imperative to determine areas that experience the worse health outcomes after 370 

wildfire PM2.5 exposure to reduce their associated burden. In our study, we found that wildfire 371 

smoke days (i.e., days with wildfire PM2.5 ≥ 15 μg/m
3
) were associated with increased same-day 372 

respiratory acute care utilizations in a statewide California model. However, the amplitude of 373 

this relationship differed spatially across air basins, counties, and ZCTAs. Additionally, we 374 

found that the impact of wildfire smoke days was worse for ZCTAs with higher proportions of 375 

Black and Pacific Islander residents and less pronounced in more affluent areas with buffering 376 

resources like tree canopy and A/C. Taken together, our study found that the health 377 

consequences of wildfire PM2.5 exposure vary across space and community characteristics, 378 

providing valuable evidence to guide the development of effective policies and the allocation of 379 

resources. 380 

Identifying areas experiencing the worse health effects is crucial for resource allocation, 381 

public health response, and preparedness directives. In California, we observed higher health 382 

impacts from wildfire PM2.5 in certain air basins including San Diego, Great Basin Valleys, and 383 

Lake Tahoe. As air basins were created to originally manage and control non-wildfire pollution 384 

emissions, wildfire PM2.5 and its health impacts may still differ within these air basins. As 385 

climate change progresses, an estimated 82 million individuals in the Western US are predicted 386 

to experience some wildfire smoke waves (at least two consecutive days with >98
th

 quantile of 387 

wildfire-specific PM2.5) by the middle of the 21
st
 century (Liu et al., 2016), making wildfire an 388 

increasingly important source of total PM2.5. Prior work found that PM2.5-related health burdens 389 

are under-estimated when wildfire PM2.5 is not explicitly considered in health impact 390 

assessments (Darling et al., 2023). Thus, it is critical to revisit air pollution problems with an eye 391 

to wildfire PM2.5 and to consider spatial differences in these exposures and effects.  392 

When considering community characteristics, we found that the effects of wildfire PM2.5 393 

were worse for historically marginalized racial groups and less-resourced communities. These 394 

community characteristics may also be key drivers of the observed spatial heterogeneity of 395 

health effects. Prior work evaluating health disparities in the context of wildfire smoke observed 396 

that socially and economically disadvantaged subgroups faced worse health effects (H. Chen et 397 
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al., 2021; Reid et al., 2016, 2023). In our study, we identified Black and Pacific Islander 398 

residents as minoritized racial groups experiencing worse consequences at the same level of 399 

exposure. Structural racism has given rise to disparities in environmental exposures, quality of 400 

housing stock, access to economic and material resources, and baseline health (Bailey et al., 401 

2017). Such racially patterned disparities may worsen the health effects of exposure to wildfire 402 

PM2.5. We also found that ZCTAs with greater material resources had a dampened health 403 

response to wildfire PM2.5 exposure. Access to material resources may indicate greater wealth, 404 

which has been linked to improved capacity to mitigate and cope with wildfire PM2.5 (Burke et 405 

al., 2022; deSouza & Kinney, 2021). Our findings contribute to prior research focused on 406 

examining vulnerability to wildfire PM2.5 across subgroups (Vargo et al., 2023). Additionally, 407 

current air quality management plans can make an effort to protect the most vulnerable. For 408 

example, clean air centers in California may be expanded to serve additional communities of 409 

color and economically disadvantaged areas (Bay Area Air Quality Management District, 2021; 410 

US EPA, 2021).  411 

 This study had a few limitations. First, the modeled wildfire-specific PM2.5 (Aguilera et 412 

al., 2023) may underestimate extreme exposure values given the training sample. However, our 413 

use of a binary exposure definition dichotomized at ≥15 μg/m
3
 would correctly classify extreme 414 

values as wildfire smoke days. The binary definition meant that we assumed health risks were 415 

the same for any exposure level exceeding the threshold, and thus we could not capture any 416 

exposure-response relationships that may occur particularly at the higher wildfire PM2.5 values 417 

(Heft-Neal et al., 2023). Second, we utilized spatial units based on administrative borders, which 418 

may not be the most relevant unit to assess spatial heterogeneity in the effect of wildfire PM2.5 419 

exposure. In addition, these units are of irregular shapes and sizes, with uneven population 420 

densities across them. However, we centered our exposure estimates to the population-weighted 421 

centroids of ZCTAs to improve the spatial alignment of health outcome and exposure. Another 422 

limitation is that we assigned wildfire PM2.5 exposure at individuals’ residential ZCTAs but 423 

people may move across ZCTAs, which can result in exposure misclassification. However, for 424 

days with high wildfire PM2.5, individuals who can stay home would likely remain at indoors and 425 

reduce the possibility of exposure misclassification. 426 

With the increasing severity of wildfires, it is crucial to improve our understanding of 427 

wildfire PM2.5-related health impacts. We have a few recommendations for future research 428 
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endeavors in the area. First, we only evaluated spatial variation in the health impacts of wildfire 429 

PM2.5 in California, and future studies should extend to other US states and countries. Such 430 

consideration could facilitate early identification of vulnerable areas and populations, and it can 431 

guide subsequent targeted intervention efforts. Second, given the heterogeneity that we and 432 

others have observed by community characteristics, future studies should identify the most 433 

salient characteristics that modify the relationship between wildfire PM2.5 and health. We tested 434 

how community characteristics in isolation modified the effect of wildfire PM2.5 on health but 435 

these characteristics likely act synergistically, and future studies should endeavor to identify the 436 

combination of characteristics that leads to the highest vulnerability. Third, we evaluated short-437 

term associations between wildfire PM2.5 and health but climate change will likely lead to 438 

increases in repeated wildfire PM2.5 exposure and thus we must improve our understanding of the 439 

health impacts of long-term wildfire PM2.5 exposure. Last, we summarized ZCTA community 440 

characteristics using a combination of Decennial Census Survey data and American Community 441 

Survey-based Healthy Places Index data, which may miss important sub-populations. For 442 

example, although the 2010 Census enumerated people in emergency and transitional shelters 443 

(Bureau, 2021b), those experiencing homelessness—likely a highly vulnerable group (Ramin & 444 

Svoboda, 2009)—may still be missed. We encourage an inclusive future research agenda that 445 

prioritizes potentially vulnerable and understudied populations. 446 

Most previous wildfire epidemiological studies assume that the effect of wildfire PM2.5 is 447 

consistent across geographies and populations. Our results suggest that instead, spatial 448 

heterogeneity exists in the relationship between short-term wildfire PM2.5 exposure and 449 

respiratory acute care utilizations in California. We identified several community characteristics 450 

that may have explained the differences observed; these included higher proportions of Black 451 

and Pacific Islander populations and more affluent community. Allocating scarce resources 452 

based on differential response to wildfire PM2.5 could help reduce health disparities.  453 

 454 

  455 
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