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Key points: 9 

- We perform a quantitative assessment of the effects of optical imagery and topography data 10 

characteristics, primarily ground resolution, on the measurement of fault surface displacements. 11 

- Measured displacements across the fault zone are under-estimated by a factor 0.7-0.8 when using 12 

low-resolution (>10 m) compared to high-resolution (≤1 m) imagery.  13 

- High-resolution (<0.5 m) stereo optical imagery presents as a good candidate for the future STV 14 

Earth observation system from earthquake hazard perspectives. 15 

 16 

Abstract 17 

The amount and spatial distribution of surface displacement that occurs during an earthquake are 18 

critical information to our understanding of the earthquake source and rupture processes. However, 19 

the earthquake surface displacement generally occurs over wide regions, includes multiple 20 

components affecting the ground surface at different spatial scales, and is challenging to 21 

characterize. In this study, we assess the sensitivity of optical imagery and topography datasets of 22 

different resolutions to the earthquake surface displacement when using optical image cross-23 
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correlation (OIC) techniques. Results show that the average noise in the output displacement maps 24 

linearly increases with decreasing image resolution, leading to greater uncertainty in determining 25 

the geometry of the faults and the associated displacement. Fault displacements are, on average, 26 

under-estimated by a factor ~0.7-0.8 when using 10 m compared to 0.5 m resolution imagery. Our 27 

analysis suggests that an optical image resolution of ≤1 m is necessary to accurately capture the 28 

complexity of the ground displacement. We also demonstrate that sub-meter vertical accuracy of 29 

the digital surface/elevation model (DSM/DEM) is also required for accurate image 30 

orthorectification, and is better achieved using high-resolution stereo optical imagery than existing 31 

global baseline topography data. Together, these results highlight the measurement needs for 32 

improving the observation of earthquake surface displacement towards the development of future 33 

Earth surface topography and topography change observing systems. 34 
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1. Introduction 39 

Continental earthquakes often generate surface displacements that can be directly observed using 40 

satellite imagery. Measuring the amount and spatial distribution of the earthquake surface 41 

displacement then allows for untangling the shallow Fault Zone (FZ) coseismic deformation 42 

processes (Antoine et al., 2024, 2022, 2021; Barnhart et al., 2020; Li et al., 2023; Milliner et al., 43 

2021; Zinke et al., 2019), bringing insights into the FZ mechanical behavior. Surface displacement 44 

measurements also enable constraining the earthquake rupture processes at depth using numerical 45 

inversion methods (e.g., Fialko et al., 2001; Jin and Fialko, 2021; Jolivet et al., 2014; Ragon and 46 
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Simons, 2020; Segall, 2010; Simons et al., 2002; Wang et al., 2020). However, the earthquake 47 

surface displacement can include multiple deformation components that affect the ground surface 48 

across a wide range of spatial scales. The broad scale coseismic deformation, of several tens of 49 

kilometers wide, primarily arises from the elastic response of the crust to the deep earthquake 50 

rupture (Avouac, 2015; Segall, 2010). The deformation that occurred on the faults and in their 51 

proximate vicinity, at a spatial scale of ~1-100 m, often leads to inelastic and permanent 52 

deformation of the crust which can take place through a combination of slip along primary faults, 53 

distributed deformation along secondary faults and/or fractures (e.g., DuRoss et al., 2020; Klinger 54 

et al., 2005; Rockwell et al., 2002; Teran et al., 2015; Yuan et al., 2022), and diffuse deformation 55 

of the surrounding medium (Antoine et al., 2024, 2022, 2021). The regions of surface deformation 56 

on- and near the fault correspond to what is referred to as the fault zone (FZ). Our ability to 57 

document the complete spectrum of earthquake surface deformation processes and understand the 58 

earthquake rupture process then hinges on the capability of the imaging sensors and associated 59 

processing methods to measure displacements over a wide range of spatial scales. 60 

 61 

Observation techniques generally used to measure the earthquake surface displacement field 62 

include Synthetic Aperture Radar (i.e., Interferometric SAR, SAR pixel offsets), Global 63 

Navigation Satellite Systems (GNSS), Optical Image Correlation (OIC), and Light Detection And 64 

Ranging (LiDAR) point cloud difference. All of these techniques provide capabilities to image the 65 

ground movements with different footprints, ground resolutions, and measurement accuracies. 66 

GNSS and InSAR are the most sensitive methods with millimeter to centimeter level of accuracy, 67 

and are widely used for this purpose (e.g., Delouis et al., 2023; Floyd et al., 2020; Liu et al., 2021; 68 

Simons et al., 2002; Tong et al., 2010; Wang and Fialko, 2015). However, GNSS only permits 69 
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measurements at the discrete locations, often at tens to hundreds of kilometers spacing (e.g., 70 

Fielding et al., 2020; Liu et al., 2021), and InSAR decorrelates in regions where displacement 71 

gradients are greater than the radar phase difference, which is generally along the fault ruptures 72 

(e.g., Fielding et al., 2013; He et al., 2023; Jin and Fialko, 2021; Massonnet et al., 1993; Socquet 73 

et al., 2019). For these reasons, both InSAR and GNSS present low constraints on the surface 74 

displacements that occur within and in the direct vicinity of the FZ. SAR pixel offset methods are 75 

sometimes used to retrieve the displacements closer to the faults (Jolivet et al., 2014; Liu et al., 76 

2021; Reitman et al., 2023), but these measurements often are limited by the resolution of the 77 

publicly available SAR data which is generally about 10 m.  78 

 79 

OIC (e.g., Aati et al., 2022; Leprince et al., 2007; Rosu et al., 2015), and differential LiDAR (e.g., 80 

Borsa and Minster, 2012; Nissen et al., 2014; Scott et al., 2018) techniques, on the other hand, 81 

allow for three-dimensional (3-D), spatially continuous, and possibly high-resolution (submeter-82 

scale) measurement of the earthquake surface displacement field, even in regions of high-83 

displacement gradients. Between the two techniques, OIC is more commonly used (e.g., Antoine 84 

et al., 2024, 2022, 2021; Delorme et al., 2020; Milliner et al., 2021, 2016; Teran et al., 2015; Zinke 85 

et al., 2019) as satellite optical data cover wide regions (> 15). LiDAR is generally limited to small 86 

study area because of the high-cost associated with LiDAR data acquisitions. Satellite optical 87 

imagery has been widely developed both in the public and private domains, now allowing for dense 88 

data archives in many regions of the globe. Optical imageries with different viewing angles can be 89 

combined to reconstruct the 3D ground surface (digital surface model, DSM) through 90 

photogrammetry methods, and represent a unique dataset to document the ground surface 91 

characteristics, topography, topography change, and horizonal displacement for analyzing the 92 
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earthquake and FZ deformation processes. Therefore, stereo optical imaging has been proposed as 93 

one of the technology candidates for future Earth Surface Topography and Topography Change 94 

Global Observing systems such as NASA Surface Topography and Vegetation Mission (STV) 95 

(Donnellan et al., 2022, 2017). 96 

 97 

 98 

Figure 1. (a) East-west surface displacement along the 2021 Maduo, Tibet, rupture from the 99 

OIC of  Sentinel-2 optical images at 10 m ground resolution (Antoine et al., 2024). HR (0.5 100 

m) OIC result from Antoine et al. (2024), derived from the cross-correlation of SPOT6/7 and 101 

Pleiades images, and covering our study site (black rectangle) shown within the dashed black 102 

polygon. Epicenter location, from global CMT catalog (GCMT), is shown with a yellow star. 103 

(b) East-west surface displacement from the HR OIC results from Antoine (2024) across our 104 

study site. Study site area corresponds to the common area covered by all datasets, and is 8.5 105 

km-long. Field rupture map from Yuan et al. (2022) is overlaid in black.  106 

 107 

As of today, low-resolution (LR; 3-10 m) optical imagery (e.g., SPOT1-4, Planet, Landsat, 108 

Sentinel), because it is freely available and presents a regional/global coverage, is widely used to 109 
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characterize the horizontal earthquake surface displacement field (e.g., Avouac, 2015; Chen et al., 110 

2020; He et al., 2023; Li et al., 2022; Milliner and Donnellan, 2020; Fig. 1a). High-resolution 111 

imagery (HR; <3 m; e.g.,  Pleiades, WorldView, SPOT5-7) was though shown to be a more reliable 112 

source of information, especially for mapping the fault ruptures (e.g., Klinger et al., 2005; Reitman 113 

et al., 2023), and assessing the different components of the near-fault surface deformation (e.g., 114 

Antoine, 2024, 2021; Zhou et al., 2018; Fig. 1b) and the fault zone width (FZW; Ajorlou et al., 115 

2021) using OIC methods. In the case of stereo acquisitions, HR optical imagery also allows for 116 

modeling the surface topography and measuring topography change (e.g., Antoine et al., 2021, 117 

2022; Barnhart et al., 2020, 2019; Delorme et al., 2020; Zhou et al., 2015). However, HR images 118 

are usually accessible only through purchase or with agreement with satellite agencies (exceptions 119 

of freely available samples exist but only over limited regions, i.e., in the case of disasters 120 

programs), and do not cover the entire globe surface. Moreover, HR images have a smaller spatial 121 

coverage (<20x20 km), and are generally provided as non-orthorectified products, meaning that 122 

they present distortions due to acquisition geometry (viewing angle and satellite attitude 123 

parameters). As a result, HR OIC requires accurate image orthorectification to be performed 124 

beforehand, which consist in a careful modeling of the camera attitude parameters and ground 125 

topography, and projection of the stereo optical images into a common ground geometry  (Leprince 126 

et al., 2007; Rupnik et al., 2016; Shean et al., 2016).  127 

 128 

For image orthorectification and vertical displacement measurement, accurate Digital 129 

Elevation/Surface Models (DEMs/DSMs) from pre- and post-earthquake periods are therefore 130 

needed. However, global-coverage DSMs and/or DEMs are generally available at resolutions of  131 

>30 m (e.g., ALOS30, NASA/SRTM, Copernicus , ASTER). HR DSMs and/or DEMs are 132 
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generally available only locally in some limited regions of interest, usually from previous scientific 133 

publications (e.g., Antoine et al., 2022; Willis et al., 2019), or available for purchase over wider 134 

areas (e.g., ALOS World 3D). Moreover, calculating DSM from HR optical imagery requires 135 

availability and access to stereo data with acquisition parameters compliant with 136 

stereophotogrammetry requirements (e.g., complementary viewing angles, access to the 137 

acquisition parameters) (Hasegawa et al., 2000; Yin et al., 2023). In this regard, publicly available 138 

HR optical and topography data on a global scale are essential for accurate FZ deformation analysis 139 

and feature extraction over different geological and tectonic settings (Donnellan et al., 2017; 140 

Schumann and Bates, 2018). 141 

 142 

Towards developing a global Surface Topography and Vegetation (STV) Earth Observation 143 

System (Donnellan, 2021),  in this study, we provide a quantified analysis of the impact of optical 144 

and topography data resolution on the measurement of surface displacement across the FZ from 145 

the Solid Earth fault hazard perspective. The STV mission is in development stage with a primary 146 

goal of global mapping 3-D topography and topography change subject to scientifically defined 147 

resolution and measurement accuracy across broad science and application disciplines including 148 

Solid Earth, vegetation structure, cryosphere, hydrology and coastal geomorphology (e.g., DeLong 149 

et al., 2022; Donnellan et al., 2022). Through this study, we aim to address the following questions: 150 

what is the impact of optical imagery and topography data resolution on the assessment of the FZ 151 

geometry and surface displacement using OIC methods? How does measurement accuracy evolve 152 

with data resolution? To answer these questions, we perform OIC analyses using optical imagery 153 

and DEMs/DSMs datasets of various resolutions and sources to measure the near-fault ground 154 

displacement field, using the 2021 Mw7.4 Maduo, Tibet, earthquake rupture as a case study. For 155 
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different datasets or combination of them, we analyze the signal to noise ratio in the obtained 156 

ground displacement maps, and its impacts on the determination of the FZ geometry, the FZW, 157 

and the associated displacements.  158 

 159 

2. Study site and available observations 160 

The 2021 Mw7.4 Maduo earthquake ruptured bilaterally and with a strike-slip left-lateral 161 

mechanism the Jiangcuo fault, located within the Bayan Har block of the Eastern Tibetan plateau 162 

(e.g., Fan et al., 2022; L. He et al., 2021; Liu et al., 2022; Wei et al., 2022). This earthquake 163 

generated a 160-km long surface rupture, which has been widely characterized using several 164 

geodetic (e.g., Fan et al., 2022; K. He et al., 2021; Jin and Fialko, 2021; Liu et al., 2021; Tong et 165 

al., 2022; Xiong et al., 2022; Yang et al., 2022; Zhao et al., 2021), field (Pan et al., 2022; Ren et 166 

al., 2022, 2021; Xie et al., 2022; Yuan et al., 2022) and seismic data (e.g., Li et al., 2022; Liu et 167 

al., 2021; Wei et al., 2022; Zhang et al., 2022). Field data report sparse surface ruptures with up to 168 

2.6-2.9 m of horizontal displacement detected locally along primary fault strands (Pan et al., 2022; 169 

Ren et al., 2022, 2021; Xie et al., 2022; Yuan et al., 2022). The total horizontal surface 170 

displacement measured from OIC is 2.27-2.35 m, and occurs over a FZW of 30 m to 2.15 km 171 

(Antoine, 2024; Li et al., 2022; Fig. 1). Thanks to the extensive imagery archives and pre-existing 172 

studies, this event represents a good case to assess the effects of different optical imagery 173 

resolutions (0.5-10 m) on resolving the surface displacements across the FZ. Moreover, the rupture 174 

area is free of vegetation, snow and human activities, which makes it ideal for OIC applications. 175 

We focus on a specific region of the 2021 Maduo rupture, located at 45 km to the north-east of the 176 

epicenter, where both complex fault geometry, and distributed and diffuse deformations were 177 

documented (Antoine et al., 2024; Li et al., 2022; Li et al., 2023). Along this section, a separate 178 
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analysis using HR optical data revealed an average surface displacement of ~2.81 m and FZW of 179 

~363 m (Antoine et al., 2024; Fig. 1b). 180 

 181 

3. Data and Methods 182 

3.1. Optical and topography data 183 

This work uses optical imagery and topography data of various resolutions provided by different 184 

space agencies to perform image orthorectification and OIC (Tab. S1). The results are combined 185 

with pre-existing OIC (Antoine et al., 2024) and SAR results (Liu et al., 2022) for further analysis. 186 

Pre-existing OIC results include pre-earthquake SPOT6/7 and post-earthquake Pleiades OIC at a 187 

common 0.5 m ground resolution, and Sentinel2 OIC at a 10 m ground resolution (Antoine et al., 188 

2024). Pre-existing SAR results are derived from differential interferometric SAR (InSAR, 189 

DInSAR), pixel offset-tracking (POT), multiple aperture InSAR (MAI), and burst overlap 190 

interferometry (BOI) measurements at a ground resolution of 100 m (Liu et al., 2022). Optical 191 

imagery datasets used in this study include WorldView1/2/3 and Planet images, at resolutions of 192 

0.39-0.67 and 3.125 m, respectively (Tab. S1). Planet images are downloaded as orthorectified 193 

products, whereas WorldView1/2/3 images correspond to non-orthorectified images. We also use 194 

downsampled versions of the WorldView orthoimages we produce (see 3.2. for details on 195 

orthorectification) to analyze separately the effect of image resolution from other effects, including 196 

sensor quality and image orthorectification which vary for different satellite agencies. This 197 

approach also allows us to extend the tested image resolutions (every 1 m from 0.5 to 10 m), 198 

allowing for a more complete analysis of the data resolution effect on the measurements. 199 

Topography datasets include HR pre- and post-earthquake DSMs derived from the HR tri-stereo 200 

WorldView1/2/3 images along with external and publicly available 30-m ground resolution NASA 201 
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and Copernicus DEMs. Similar to the optical data, we produce downsampled versions of the HR 202 

pre- and post-earthquake WorldView DSMs to test a wide range of topography data resolutions 203 

(from 1 to 30 m) while preserving the native vertical accuracy of the stereo-DSMs (~0.5 m; Rupnik 204 

et al., 2018; Schumann and Bates, 2018; Zhou et al., 2015). The effect of DSM vertical accuracy, 205 

which primarily depend on the sensor type, is assessed by comparing the quality of OIC 206 

displacement measurements derived from orthorectifying the optical images using either the 207 

stereo-DSMs or the Copernicus and NASA DEMs.  208 

 209 

3.2. Method 210 

3.2.1. Optical image cross-correlation (OIC)  211 

Optical image cross-correlation (OIC) is a technique that allows for measuring the continuous 212 

displacement of features between spatially co-registered images (Leprince et al., 2007; 213 

Puymbroeck et al., 2000; Rosu et al., 2015). Using satellite (or airborne) images acquired at 214 

different time periods, one can monitor the ground surface evolution (e.g., Bontemps et al., 2018; 215 

Dehecq et al., 2015). In this study, we use the MicMac OIC method (Rosu et al., 2015; Rupnik et 216 

al., 2017) based on a 2D statistical feature matching exploiting the color information from the 217 

pixels (0-255 in panchromatic images) to measure ground surface displacements between pre- and 218 

post-earthquake orthorectified images. In practice, one defines a correlation window size which 219 

determines the width of the group of pixels that will be used for the statistical matching. At every 220 

pixel position in the pre-earthquake image, the correlator considers the pixel color pattern within 221 

this correlation window, and searches for the best matching pattern in the post-earthquake image 222 

(correlation score from 0 to 1). The search window width in the post-image is set based on a priori 223 

knowledge of the surface displacement, generally from seismic, field or other geodetic 224 
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observations, to constrain the search area to a reasonable region, and limit the calculation time and 225 

matching errors. The search window moves across the post-earthquake image with step ranging 226 

from 1 to 1/20th of a pixel through an iterative correlation process, allowing for sub-pixel 227 

displacement detection. 228 

 229 

In this study, we performed OIC for all datasets using the same parameters, including a 5 pixels-230 

wide correlation window, a search window of ±2.5 m, and a regularization of 0.3. These parameters 231 

can be adjusted to improve the OIC results in each case but, in a matter of consistency for the 232 

sensitivity study, we use common parameters throughout the study. The cross-correlation products 233 

consist in pixel displacement maps, in the x and y directions of the images, which correspond to 234 

the east-west and north-south direction of the orthorectified images, along with a correlation score 235 

(0-1) map (Fig. S1). The correlation score map can be used to filter the OIC results, and weight 236 

the displacement measurements (Fig. 2, steps 6 and 7). A wide range correlation parameters (e.g., 237 

Cofaru et al., 2010; Rosu et al., 2015) and filtering techniques (e.g., Andreuttiova et al., 2022; 238 

Stumpf et al., 2018) can be used to improve the OIC result for each dataset. However, the combined 239 

effects of these techniques and parametrizations are numerous, can vary for each dataset, and are 240 

thus not directly addressed within the scope of this study which primarily focuses on the effect of 241 

the data resolution. However, through simple tests on some of the datasets (Fig. S2) as well as 242 

comparison with other published measurements (Tab. 1), we briefly attempt to assess some 243 

possible effects of different processing techniques and parametrizations. 244 

 245 

3.2.2. Complete processing pipeline 246 
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The processing pipeline used in this study to perform OIC of stereo images includes 7 major steps. 247 

Alongside the MicMac software, this work requires the use of GDAL for data cropping and 248 

resampling, Stackprof tool for stacked displacement profile extraction (see also section 3.2.3.), and 249 

python scripts for compilations of the measurements and statistics. This pipeline is similar to those 250 

applied in most photogrammetry and OIC approaches (e.g, Aati et al., 2022; François Ayoub et 251 

al., 2009; Shean et al., 2016), though they all present small differences depending on the type of 252 

data and software used. As mentioned earlier, differences in the correlation method and approach 253 

can lead to some differences in the resulting product (Avouac and Leprince, 2015; Bickel et al., 254 

2018; Dematteis and Giordan, 2021; Montagnon et al., 2023; Rosu et al., 2015). Based on existing 255 

comparative studies (e.g., Bickel et al., 2018; Dematteis and Giordan, 2021; Montagnon et al., 256 

2023; Rosu et al., 2015) as well as comparable measurements on similar sites (e.g., Antoine et al., 257 

2024, 2022, 2021; Barnhart et al., 2020; Cheng and Barnhart, 2021; Li et al., 2023; Milliner et al., 258 

2021; Tab. 1), we consider the effect of data resolution to be consistent across OIC approaches.  259 

 260 
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 261 

Figure 2. Diagram describing the processing pipeline applied in this study, based on the use 262 

of the MicMac photogrammetry and image cross-correlation software (Rosu et al., 2015; 263 

Rupnik et al., 2016). The pipeline includes 7 steps. Steps 2 and 3 are performed separately 264 

between the pre-earthquake and post-earthquake datasets, whereas other steps involve both 265 

pre- and post-earthquake datasets together. Grey steps correspond to the steps leading to 266 

output products including DSMs (step 2), orthoimages (step 3), and OIC maps (step 5). Tests 267 
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using external and/or resampled datasets, highlighted in color on the side of the diagram, 268 

take place at steps 3 and 4, respectively. 269 

 270 

Step 1 consists in image co-registration through tie point detection (identification of common 271 

features across images), and bundle block adjustment (refinement of camera calibration and 272 

orientation; Rupnik et al., 2016). This step is performed commonly to the pre- and post-earthquake 273 

images to improve their co-registration accuracy. Step 2 calculates pre- and post-earthquake DSMs 274 

separately from the dense matching of the pre- and post-earthquake image pools for which 275 

orientation has been refined earlier (Step 1). Step 3 is the image orthorectification, performed 276 

individually for each image using the DSMs/DEMs of the corresponding period. Orthorectifying 277 

the pre- and post-earthquake images using separate pre- and post-earthquake DSMs prevents 278 

introducing noise from earthquake-related topography changes. Step 4 consists in cropping all 279 

orthoimages onto the same footprint, generating datasets with similar georeferencing, pixel size 280 

and pixel number for the OIC purpose. This step can be done automatically if images are precisely 281 

co-registered, or manually by locating common features in the images. Only then, image sub-pixel 282 

cross-correlation (OIC) can be performed, at Step 5. In the case of stereo (2 images) or tristereo (3 283 

images) datasets, OIC is performed between all the possible pre- and post-earthquake orthoimage 284 

couples, which in this study represent a maximum of 9 combinations. At Step 6, the different OIC 285 

products are stacked, separately for the x (east-west) and y (north-south) components, using a 286 

weighted median method based on the OIC correlation score map (Delorme et al., 2020). Finally, 287 

at Step 7, across-fault displacement profiles are extracted to analyze the across-fault displacement 288 

offsets, and build FZ displacement (FZD) budget and FZ width (FZW) evolution (see section 289 

3.2.3.). The complete processing pipeline is applied to the cases of the non-orthorectified HR 290 
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optical images (WorldView in this study, similar pipeline applied to SPOT and Pleiades in 291 

Antoine, 2024). However, some data correspond to orthorectified products (Planet, Sentinel) that 292 

were already processed from steps 1 to 3 directly by the space agencies, using a different strategy 293 

generally based on the use of global LR DEMs. In this case, data only require processing from 294 

Step 4 to 7.  295 

 296 

Tests on the effect of DEMs/DSMs resolution on the orthorectification and OIC products are 297 

performed by replacing, at Step 3, the original DSM calculated from the stereo images by the tested 298 

topography dataset, cropped over the same area and resampled with the same pixel size. Tests on 299 

the effect of optical image resolution, apart from those performed on the datasets originating from 300 

different sensors, are performed by using, in Step 4, downsampled versions of the high-resolution 301 

orthoimages originally obtained from the tri-stereo WorldView dataset, in Step 3. Downsampling 302 

of both the DSMs and the orthoimages is performed using GDAL. 303 

 304 

3.2.3. Displacement profiles, and FZ displacement and FZW measurements 305 

This study focuses on the measurement of the fault zone displacements (FZD) and width (FZW) 306 

which represent two main parameters generally considered in earthquake surface displacement 307 

analysis (e.g., Antoine et al., 2024, 2022, 2021; Gold et al., 2021, 2015; Li et al., 2022; Milliner et 308 

al., 2021; Teran, 2015; Zinke et al., 2019). To do so, we use stacked-profiles placed 309 

perpendicularly to the FZ every 200 m along the study area (StackProf tool), representing 44 310 

profiles in total. Profile width is set to be 200 m, which was estimated as a good trade-off between 311 

noise reduction and conservation of the signal complexity (Li et al., 2022). Within the profile box, 312 

displacement measurements are stacked using a weighted median method based on the OIC 313 



 16 

correlation score map. Displacements initially obtained in the east-west and north-south 314 

components are projected, using the local azimuth of the inferred FZ, onto the fault-parallel and 315 

fault-normal directions. For the case of the 2021 Maduo earthquake, left-lateral displacement is 316 

the primary component of the surface displacement (Fig. 1), hence the measurements are focused 317 

on the fault-parallel component.  318 

 319 

For each profile, we fit linear regressions to the displacement values outside of the inferred FZ, 320 

and assess the FZD by measuring the displacement offset between these two regressions (e.g., 321 

Antoine et al., 2024, 2022, 2021; Gold et al., 2015; Li et al., 2022). We also report the width of 322 

this offset, that corresponds to the FZW. In this study, we focus on measuring the maximum offset 323 

between the two regressions, which represents the total surface displacement across the FZ. We 324 

do not quantify the separate contributions of the localized surface slip and that of the more 325 

distributed and/or diffuse deformation, which has been the focus of another study (Antoine et al., 326 

2024). Uncertainty on each FZD measurement, given by the StackProf tool, considers the error on 327 

the linear regressions on both sides of the FZ. Uncertainty on the FZW, however, is essentially 328 

epistemic and related to the choice of the FZ location by the operator (Reitman et al., 2022). It is 329 

generally poorly documented in the studies, and there exists no unique method to assess such 330 

uncertainty. In this study, we choose to assess the FZW uncertainty by measuring a minimum and 331 

maximum FZW for each profile along with a preferred FZW for which the FZD was assessed, 332 

method previously used by Gold et al. (2015).  333 

 334 

4. Results 335 

4.1. Impact of optical image resolution on the OIC results 336 
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4.1.1. Images acquired by different satellite sensors 337 

In this section, we compare ground displacement measurements obtained from the OIC of images 338 

acquired by different satellite sensors and with resolutions ranging from ~0.5 to 10 m (Figs. 3, 4, 339 

S1 and S3, and Tabs. S1 and S2). We also compare these results with the displacement maps 340 

derived from SAR measurements (Liu et al., 2022) at a 100 m resolution.  341 

 342 

4.1.1.1. Surface displacement and curl maps 343 

We present the east-west (E-W) component of the displacement field (north-south (N-S) 344 

component presented in Figure S1) along with curl maps, which were derived from the E-W and 345 

N-S displacements (Figs. 3g,h, and S3). Visual analysis of the displacement maps obtained from 346 

the OIC of the different imagery datasets first highlights a consistent E-W displacement offset of 347 

amplitude ±2 m. Transition between the NE and SW regions of the study area, which were 348 

displaced in opposite directions, occurs along an oblique structure lying at the center of the study 349 

area, corresponding to the FZ. Even though, at a first order, consistency is observed between the 350 

different results, we also highlight the differences in the signal to noise ratio, impacting the inferred 351 

FZ geometry and associated FZD and FZW measurements. Spatially coherent noise first arises 352 

from topography residuals due to camera attitude parameter estimations and DEM errors (Fig. 2, 353 

steps 1-3). Such noise is common for data downloaded as orthorectified products, and for which 354 

orthorectification is not always performed using a refined camera model nor a HR and accurate 355 

DEM/DSM (Fig. 2, step 1). Noise also occurs in regions of lesser surface texture change, where 356 

the correlator cannot identify common pixels between the pre- and the post-earthquake images, 357 

with common sources that are vegetation, snow, water, and clouds. Finally, high-frequency noise 358 
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arises from random cross-correlation error, especially enhanced by image noise (Bornert et al., 359 

2018, 2009; Su and Zhang, 2016). 360 

 361 

 362 

Figure 3. (a-f) East-west (E-W) surface displacements along the study site calculated from 363 

the OIC of images originating of different sensors and of different resolutions (Tab. S1), and 364 
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comparison with SAR-derived measurements from Liu et al. (2022). AA’ and BB’ across-365 

fault displacement profiles are presented in Figure 4. (g-l) Map of the curl (𝝎) calculated 366 

from the E-W (𝒖𝒙) and N-S (𝒖𝒚) downsampled and filtered (Fig. S3) displacement maps using 367 

the following relation 𝝎 =  𝛁 ×  𝐔
 
=  

𝝏𝒖𝒚

𝒙
−  

𝝏𝒖𝒙

𝒚
 (Zhou et al., 2018). Negative curl (red) corresponds 368 

to anti-clockwise rotation and is consistent with the left-lateral mechanism of the 2021 369 

Maduo rupture.  370 

 371 

Among the different results, those obtained from HR imagery (Fig. 3a,b) allow for describing 372 

spatial variations in the FZ geometry, and separating the diffuse deformation regions, especially 373 

to the NW of the study area, from the localized ones. Fault bends and relay zones can also be 374 

observed along the FZ in these maps (blue lines in Fig. 3a,b). Such complex FZ geometry is 375 

particularly highlighted in the curl maps including, for example, asymmetric and mixed diffuse 376 

and localized patterns across the FZ to the NW of the study area. Across both HR displacement 377 

and curl maps, such complex patterns are consistently observed (Figs. 3a,b,g,h, S1a,b, and S3a,b). 378 

Small differences include greater topography-correlated noise in the WorldView OIC result (as 379 

well as decorrelation due to the presence of a cloud across the FZ), and greater background noise 380 

in the SPOT/Pleiades OIC result. Greater background noise in the SPOT/Pleiades OIC likely arises 381 

from the fact that SPOT6/7 images were upsampled to the 0.5 m native resolution of the Pleiades 382 

images (Antoine et al., 2024), possibly leading greater random correlation, especially among 383 

upsampled pixels.  384 

 385 

Results obtained using LR imagery (Fig. 3c,d,e) present a smaller signal to noise ratio, resulting 386 

in a spatially heterogeneous displacement field both across and outside of the FZ. Noise is 387 
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particularly visible in the regions outside of the fault zone (>1 km), where one would rather expect 388 

about constant displacements as shown in the HR results. In the curl maps, noise arises as high-389 

frequency displacement variations, especially visible in the regions outside of the FZ, and with 390 

amplitudes similar to that of the curl signal across the FZ (Fig. 3i,j,k). Noise standard deviation 391 

(std, analyzed to the NE of the inferred FZ within the mountainous areas, Fig. S4) increases with 392 

decreasing image resolution, from a std of 0.30 m in the WorldView OIC results to a std of 1.76 393 

m in the Sentinel-2 OIC results (raw result, no filtering). After filtering and smoothing of the 394 

Sentinel-2 results, background noise reduces with now a std to 0.47 m (Fig. 1e,k; see Antoine et 395 

al., 2021 for methodology). Nevertheless, filtering and smoothing fails to help retrieving the high-396 

resolution information on the FZ geometry as well as removing the low-frequency noise. As a 397 

result, the FZ primarily shows up as a continuous and curved structure absent of geometrical 398 

complexity in the LR displacement results. The FZ identification and FZD and FZW 399 

measurements in the LR results are then subjected to ad hoc interpretations, and are not always 400 

consistent from one displacement product to another. 401 

 402 

As a case example of comparison between OIC and SAR measurements in the near-fault domain,  403 

we compare our results with the SAR-derived displacement maps from Liu et al. (2022) (Fig. 3f,l). 404 

The SAR results present a 100 m ground resolution and a cm-scale accuracy, which is consistent 405 

with the characteristics of typical multi-look SAR-derived products used to image earthquake 406 

ground displacements (e.g., Fielding et al., 2013; He et al., 2023; Jin and Fialko, 2021; Massonnet 407 

et al., 1993; Socquet et al., 2019; Tong et al., 2022; Zhao et al., 2021). Displacement amplitudes 408 

between the SAR and OIC measurements are consistent at the first order. However, at the scale of 409 

the study area, the FZ location and geometry reported by the SAR measurements is incorrect with 410 
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regard to both the LR and HR OIC results. This observation supports the previous inference that, 411 

in the near-fault domain, measurements derived from SAR data are generally less accurate than 412 

those derived from optical data. 413 

 414 

4.1.1.2. Displacement profiles, and fault zone displacement budget, and fault zone width 415 

evolution 416 

Displacement profiles (see section 3.2.3 for methodology) are used to assess the evolution of the 417 

FZD and FZW along the study area, for the different displacement products (Figs. 3 and S1). We 418 

first present the analysis of two separate displacement profiles, and then assess the along-strike 419 

FZD budget and associated FZW evolution. The two profiles include one profile across a wide FZ, 420 

characterized primarily by diffuse deformation (AA’ in Figs. 3 and 4a), and one profile across a 421 

narrower FZ, characterized primarily by localized deformation (BB’ in Figs. 3 and 4a). We first 422 

observe that the two displacement profiles, when taken across the HR results (red and blue profiles 423 

in Figure 4a), report similar displacement patterns. These patterns include a displacement offset in 424 

the middle of the profile, of similar amplitude in both profiles, surrounded by regions of constant 425 

displacement. The position of the displacement offset corresponds to the location of the FZ. The 426 

two same profiles taken across the SAR-derived results (black profile, Figure 4a) display 427 

consistent patterns; however, in this case, the displacement offset is under-estimated, and mis-428 

located in the case of profile BB’, highlighting the lower constraints provided by SAR data in the 429 

near-fault domain.  430 

 431 

Profiles taken across the LR displacement maps (green, orange and pink profiles, Figure 4a) show 432 

displacement variations both at low- and high-frequencies, making the determination of the 433 
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displacement offset and the associated FZD and FZW more challenging. In fact, these profiles do 434 

not allow for a clear identification of the FZ location. Uncertainties on the measured FZD and 435 

FZW are then on the order of a few tens of centimeters and hundreds of meters in amplitude, 436 

respectively. Uncertainty in the FZW measurement is even larger than the measured value itself, 437 

revealing the arbitrary nature of the FZ location and geometry determination when using the LR 438 

results compared to the HR results. Uncertainty on the FZD and FZW measurements, for the 439 

profiles AA’ and BB’ respectively, increases by a factor of ~10-100 and of ~2 from the HR to the 440 

LR results (Fig. 4a).  441 

 442 

Analyzing the stacked profiles every 200 m along the study area, 44 profiles in total, we assess the 443 

FZD (Fig. 4b, and Tab. S2) and FZW evolutions (Fig. 4c, and Tab. S2) along the FZ strike. 444 

Measurements derived from the HR results show great consistency (blue and red curves in Fig. 445 

4b,c) with an average difference in the FZD measurements of ~2% between the WorldView and 446 

the SPOT/Pleiades results. Maximum differences along individual profiles reach ~0.5 m, which is 447 

less than 20% of the average FZD (2.74 ± 0.007 m and 2.81 ± 0.009 m for the WorldView and 448 

SPOT/Pleiades OIC results, respectively). Local differences, in this case, can be explained by 449 

variations in the noise from one dataset to another (e.g., presence of a cloud across the FZ in the 450 

WorldView3; Fig. 3a) which then disrupts the FZD and FZW measurements.  451 

 452 
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 453 

Figure 4. (a) Across-fault stacked displacement profiles, in the fault-parallel component, 454 

placed across the FZ in the displacement maps derived from the OIC of different satellite 455 

sensors optical data (Fig. 3a-f). Dashed black lines are the linear regressions, and black 456 

circles are the piercing points used for the displacement offset measurements. FZD (y, in 457 

m) and FZW (x, in m) are indicated on the left and right side of the profile, respectively. 458 

(b) FZD budget (m) in the fault-parallel component, derived from the analysis of the 44 459 
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profiles, placed every 200 m perpendicularly to the FZ (Tab. S2). (c) FZW (km) measured 460 

for each displacement offset (Tab. S2). 461 

 462 

FZD and FZW curves obtained from the analysis of the LR displacement maps (green, orange, and 463 

pink curves in Fig. 4b,c) show significant differences, sometimes reaching ~2 m for the FZD, and 464 

~1 km FZW. These differences reflect the increasing uncertainty in assessing the FZ location with 465 

decreasing image resolution, as a result of greater background noise. Uncertainties on the FZD and 466 

FZW measurements increase from 0.8 cm to 42 cm, and from 129 m to 266 m when using the 467 

WorldView and the Sentinel data (raw result), respectively (Fig. 4b,c). In addition, resulting from 468 

the simplified inferred FZ geometry and the un-detected diffuse deformation regions, FZD 469 

measurements derived from the LR OIC results are, on average, under-estimated by >15% 470 

compared to that derived from the HR OIC results. Filtering and smoothing of the Sentinel-2 471 

results allow decreasing the high-frequency noise and improving the recovery of the displacement 472 

by +5% (Fig. 4b,c). However, across the different LR results, including the Sentinel-2 results 473 

before and after filtering and the Planet results, FZW measurements vary considerably around the 474 

HR reference value, obtained from the WorldView results. Therefore, FZW estimated based on 475 

LR imagery are likely unreliable compared to that obtained from HR imagery (Ajorlou et al., 476 

2021). Still, among the LR results, that obtained from the Planet data at 3.125 m resolution seems 477 

to retrieve better the FZW evolution from narrow to the east to wider to the west of the study area, 478 

suggesting a better sensitivity to FZ complexity compared to the Sentinel-2 data at 10 m resolution. 479 

Finally, average FZW values inferred from the Sentinel-2 measurements before and after filtering 480 

evolve from -25 to +15% around the HR reference, highlighting the influence that post-processing 481 

techniques can have on the FZW assessment in LR results (Fig. 3j,k). Among the datasets tested 482 
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in this study, HR optical imagery then represents the most reliable source of information for 483 

determining the FZ location, geometry, and associated FZD and FZW. 484 

 485 

4.1.2. Downsampled pre- and post-earthquake WorldView orthoimages 486 

To separate the effect of data resolution from other data related confounding factors  (e.g., sensor 487 

type, acquisition date and geometry, orthorectification quality etc.), we performed OIC on 488 

downsampled versions of the WorldView orthorectified  images, at resolutions of 1 to 10 m (Figs. 489 

5, and Tab. S3). This analysis enables cross-examination against our previous observations made 490 

using data from different satellite sensors (Figs. 3 and 4, and Tab. S2).  491 

 492 

Visual inspection of the obtained displacement maps shows an increase in the background noise 493 

with decreasing data resolution (Figs. 5 and 6a), arising both as topography-related noise in the 494 

mountainous area (Fig. 5a-f) and as random high-frequency noise, similar to what was found 495 

previously (Fig. 3). As a result, the identification of the FZ location and geometry is again 496 

challenging in the LR results, especially at resolutions lower than 3 m (Fig. 5). At comparable 497 

resolutions of 3 and 3.125 m, though, OIC results derived from the downsampled WorldView 498 

orthoimages (Fig. 5d) show less noise than those derived from the Planet orthoimages (Fig. 3c). 499 

Such difference most likely relates to the fact that the higher-level Planet data products are 500 

orthorectified using a low-resolution DEM, and without bundle block adjustment (Fig. 2, step 1). 501 

This observations supports the previous inference that sensor and orthorectification quality are 502 

critical parameters for reliable OIC measurements (Antoine et al., 2021, 2022; Leprince et al., 503 

2007; Shean et al., 2016). Conversely, at a comparable resolution of 10 m, Sentinel-2 OIC results 504 

(Fig. 3d) are less noisy than those obtained using the downsampled WorldView orthoimages (Fig. 505 
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5f). This difference can arise from i) good Sentinel-2 orthoimage quality, at least compared to the 506 

Planet data, and ii) possible aliasing in the downsampled products, especially due to large 507 

downsampling factors applied (García Aranda et al., 2021). 508 

 509 

 510 

Figure 5. (a-f) East-west displacement maps calculated from the OIC of (a) WorldView and 511 

(b-f) downsampled WorldView orthoimages. No filtering is applied to the displacement map 512 

outputs, and similar correlation parameters are used for all correlations. FZ and noise 513 
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features are highlighted (similar to Fig. 3). (g) AA’ and BB’ across-fault stacked 514 

displacement profiles in the fault-parallel component. Similar to Figure 4, FZD and FZW 515 

values, and associated regression profiles are indicated. Units are meters. 516 

 517 

Profiles taken across the displacement maps show an increase in background noise with decreasing 518 

orthoimage resolution (Fig. 6a), which is particularly reflected by the std of the FZD and FZW 519 

measurements. We estimate an increase in the measurement’s std with decreasing orthoimage 520 

resolution by a factor 15 and 20 for the FZD, respectively for AA’ and BB’, and ~5 for the FZW 521 

(similar in AA’ and BB’). Considering all the measurements together, we find a linear increase of 522 

the standard deviations (stds) for both the FZD and FZW measurements with decreasing 523 

orthoimage resolution (Fig. 6b,c). For resolutions greater than 5 m, the signal to noise ratio 524 

approaches 1 (Fig. 6a), and the estimation of the FZW and associated epistemic uncertainty is 525 

subjected to the choice from the operator. On average, FZW and FZD estimations are 526 

underestimated by a factor 0.78 and 0.70, respectively, in the 10-m results as compared to the 0.55 527 

m results (Fig. S5 and Tab. S3). 528 

 529 

 530 

Figure 6. Evolution of the average standard deviation (std) associated with (a) the 531 

background noise NE of the FZ (Fig. S4), and the (b) FZD and (c) FZW measurements with 532 
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decreasing orthoimage resolution. Points with different colors correspond to the results from 533 

the multi-sensor study (Figs. 3 and 4). Red points correspond to the results based on the 534 

WorldView orthoimages, both at native and degraded resolutions (Fig. 5). Black lines are 535 

linear regressions calculated for all datapoints, with r2 the associated correlation factor.  536 

 537 

4.2. Impact of DSM/DEM resolution on the OIC result 538 

We test the effect of using DEMs/DSMs of different resolutions, acquisition sensors, and dates on 539 

optical image orthorectification and derived OIC quality (Fig. 7). To do so, we performed OIC on 540 

the WorldView1/2/3 image pool orthorectified using different DEMs/DSMs datasets including i) 541 

the high-resolution WorldView DSMs derived from those same images (Fig. 7a), ii) downsampled 542 

versions of these HR DSMs (1-30 m; Figs. 7a-c, and S6b-d) as well as iii) publicly accessible 30-543 

m-resolution DEMs from the NASA and Copernicus space agencies (Figs. 7d,e, and S6e,f).  544 

Downsampling of the DSMs preserves the native ~0.5 m accuracy of the stereo DSMs across the 545 

range of downsampled resolutions, though it reduces the high-frequency noise (Fig. S6). Thus, we 546 

can test separately the effects of topography data ground resolution (0.55-30 m), vertical accuracy 547 

(~0.5m in the WorldView DSMs, and several meters in the NASA and Copernicus DEMs; see Fig. 548 

S5 and S6), and acquisition time (pre- and/or post-earthquake) on the OIC quality, and FZD and 549 

FZW measurements. 550 

 551 
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 552 

Figure 7. East-west displacement maps calculated from the OIC of 0.55-m resolution 553 

WorldView images orthorectified using (a) high-resolution pre- and post-earthquake 554 

WorldView DSMs, (b-c) downsampled version of the pre- and post-earthquake WorldView 555 

DSMs, (d-e) the NASA and Copernicus global DEMs (from the pre-earthquake period), and 556 

(f) the high-resolution post-earthquake WorldView DSM. No filtering is applied to the 557 

displacement maps, and similar correlation parameters are used for all OIC (see Fig. S2 for 558 

tests on other parameters). (g) AA’ and BB’ across-fault stacked profiles in the fault parallel 559 
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component across (a) in red, (c) in blue, (d) in black, and (e) in green. Profile annotations are 560 

similar to Figure 4.  561 

 562 

Visual analysis of the displacement maps obtained from the different orthorectified WorldView 563 

products show consistent ground displacement patterns, including the FZ location and geometry 564 

(Fig. 7a-f). This suggests that the effect of the DEM/DSM resolutions (Fig. 2) is less significant 565 

than that of the optical image ground resolution itself though the processing chain. Particularly, 566 

similar patterns are observed across the results based on the downsampled, 1 to 30 m resolution, 567 

stereo DSMs for images orthorectification. These results confirm that the DEM/DSM ground 568 

resolution, as an individual parameter, has minor impact on the orthorectification and OIC quality 569 

(Fig. 7a-c; displacement budget and FZW evolution in Fig. S8). Although larger topography-570 

related noise appears when using DSMs of resolution >10 m (Fig. 7c), resulting in greater 571 

variability in the FZD and FZW measurement (Fig. 7g). This variation shows no clear correlation 572 

with the DSM ground resolution across the range 10-30 m, and remains on average, within a 573 

confined range of -3 and 0%, and -12 and 0.5% around the HR measurement references for the 574 

FZD and FZW, respectively (Fig. 8, and Tab. S4). 575 

 576 

Displacement maps obtained from the OIC of the WorldView images orthorectified with the 577 

Copernicus (Fig. 7e) and NASA DEMs (Fig. 7f) are in general smoother and with larger 578 

topographic noise than what previously described when using the downsamped WorldView stereo 579 

DSMs. This is particularly visible in the displacement profiles, where low-frequency noise affects 580 

the displacement trends outside of the FZ, resulting in more variable and, on average, over-581 

estimated of FZD and FZW measurements (Figs. 8 and S9, and Tab. S5). The topography-related 582 
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noise being consistent with the estimated vertical uncertainty (several meters) of the global DEMs 583 

(Brosens et al., 2022; Florinsky et al., 2018; Uuemaa et al., 2020; Zhou et al., 2018), we suggest 584 

that the DSM vertical accuracy has a direct effect on the OIC result. Noise can also arise from 585 

topography translations on one side of the post-earthquake image compared to the pre-earthquake 586 

image due to the earthquake ground displacement, an effect that was not taken into account when 587 

using the global DEMs acquired before the earthquake event (Fig. 7f). We assess the effect of such 588 

topography translation by performing the orthorectification of the WorldView images using only 589 

the post-earthquake WorldView DSM (Fig. 7f). Results indeed show topography-related noise and 590 

low frequency artefacts in the similar areas as in the results based on the NASA and Copernicus 591 

DEMs, suggesting that part of the noise observed in those three results might arise from the 592 

topography translation due to the earthquake ground displacement. Finally, geographic mis-593 

alignment between the images and topography datasets, especially when using external source 594 

DEMs that were not processed jointly with the images when refining the camera model (Shean et 595 

al., 2020) can also lead to similar type of noise. Through comparison of the differences between 596 

the pre-earthquake WorldView stereo DSM (derived from the images) and the external DEMs in 597 

the same reference frame (Fig. S7), we assess this effect to be negligeable, at least in the case of 598 

the NASADEM (Fig. 7a), although it cannot be fully excluded. 599 

 600 

5. Discussion, and implications towards the development of the Surface Topography and 601 

Vegetation (STV) Earth Observation System 602 

In this study we investigated the impacts of important characteristics of the optical imagery and 603 

topography data, especially the ground resolution, on accurate imaging of earthquake ground 604 

displacement field. Figure 8 summarizes the average FZD and FZW measurements from the 605 
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different tests performed in this study. Based on our main observations along with published results 606 

for other earthquake ruptures (Tab. 1), we highlight important characteristics of optical imageries 607 

and DEMs/DSMs that should be considered for FZD and FZW measurements using OIC methods, 608 

and implications for the development of future Earth Surface Topography Observation Systems, 609 

especially from the fault-related hazard perspective.  610 

 611 

 612 

Figure 8. Synthesis of the average measurements of (a) Fault Zone Displacement (FZD) and 613 

(b) Fault Zone Width (FZW) obtained from the different OIC tests performed in this study 614 

(Figs. 3, 5, and 7). Data points include tests using optical imagery originating from different 615 

sensors (colored circles and square, trend in dashed grey), the downsampled WorldView 616 

orthoimages (red crosses, trend in dashed red), the downsampled WorldView DSMs (black 617 

crosses, trend in dash black), and the Copernicus and NASA DEMs (orange and green 618 

crosses, included in the dashed black line). Difference between the WorldView and 619 
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SPOT/Pleiades FZD measurements at similar resolution can be explained by the presence of 620 

a cloud across the FZ in the WorldView3 images (Fig. 4b). 621 

 622 

5.1. Effect of optical image ground resolution on the measurement of horizontal surface 623 

displacements using OIC techniques 624 

Using optical images acquired by different satellite sensors along with downsampled versions of 625 

the WorldView dataset, we showed a consistent decrease in the FZD and FZW average 626 

measurements with decreasing image resolution (red and grey curves; Fig. 8). We found that FZD 627 

are underestimated by a factor ~0.8 when using  ≥10-m resolution images (e.g., Sentinel-2) 628 

compared to ~0.5-m resolution images. Under-estimation factor is calculated here as the ratio 629 

between the FZD measured in the LR Sentinel-2 and in the HR (~0.5 m) WorldView results, the 630 

latter considered to be closer to ground truth (Figs. 1b and 3a). Intriguingly, we observe a similar 631 

under-estimation of the FZD, by a factor of ~0.7-0.8, for other earthquake studies that were 632 

documented using both HR and LR optical imagery (Tab. 1). For example, in the case of the 2019 633 

Ridgecrest, California, earthquake sequence, average surface displacement associated with the 634 

Mw6.4 and Mw7.1 events, respectively, were estimated to be 0.73 ± 0.09 m and 2.13 ± 0.06 m from 635 

WorldView images (Antoine et al., 2021), compared to 0.55 ± 0.08 m and 1.60 ± 0.22 m from 636 

Sentinel-2 images (Chen et al., 2020). Similarly, in the case of the 2013 Baluchistan, Pakistan, 637 

earthquake, average FZD derived from WorldView data is  8.3 m (Gold et al., 2015) compared to 638 

only 6 m using Landsat-8 images at 15 m resolution (Avouac et al., 2014). The fact that similar 639 

under-estimation factor on FZD measurements from LR compared to HR optical imagery is 640 

observed for different earthquakes, where different images, orthorectification strategies and OIC 641 

algorithms were used (e.g., Fig. S2), is suggesting that the optical imagery ground resolution is the 642 
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primary controlling factor on the resultant OIC quality, and the derived FZD and FZW 643 

measurements accuracy. In the case of Maduo, however, average FZD estimated for the entire 644 

rupture length (~160 km) were similarly estimated from both the LR and HR data. The 2021 645 

Maduo surface deformation was shown to be primarily diffuse and to occur over an average ~600 646 

m FZW (Antoine et al., 2024; C. Li et al., 2022). Therefore, the optical imagery resolution effect 647 

on the FZD and FZW measurement accuracy is especially significant in the case of localized and 648 

narrow surface deformation features.  649 

 650 

Table 1. Comparison of FZD measurements for the 2021 Maduo rupture with other 651 

continental earthquakes.  652 

Earthquake Sensor Resolution (m) Average FZD (m) Reference 

2021 Maduo 

(Mw7.4) 

Sentinel2B 10 2.27 Li et al., 2022 

SPOT6/7/ 

Pleiades 
0.5 2.35 ± 0.09 Antoine et al., 2024 

2013 

Baluchistan 

(Mw7.8) 

Landsat8 15 6 Avouac et al., 2014 

Landsat8 15 6.7 +0.3/-0.4 Zinke et al., 2014 

SPOT5 2.5 8 Vallage et al., 2015 

WorldView 0.5 8.3 Gold et al., 2015 

2019 

Ridgecrest 

foreshock 

(Mw6.4) 

Sentinel2B 10 0.55 ± 0.08 Chen et al., 2020 

Planet 3.125 0.56 ± 0.10 
Milliner and 

Donnellan, 2020 

WorldView/ 

Pleiades 
0.5 0.73 ± 0.09 Antoine et al., 2022 

2019 

Ridgecrest 

mainshock 

(Mw7.1) 

Sentinel2B 10 1.60 ± 0.22 Chen et al., 2020 

Planet 3.125 1.68 ± 0.19 
Milliner and 

Donnellan, 2020 

WorldView/ 

Pleiades 
0.5 2.13 ± 0.06 Antoine et al., 2022 

 653 

From these results, we suggest that the optimal image resolution for accurately measuring the FZD 654 

and FZW as well as deciphering the localized versus diffuse nature of surface deformation lies 655 
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between <0.5 and ~1 m, for earthquakes of Mw>6.4 (Fig. 8 and Tab. 1). In this study, starting from 656 

a resolution of 2 m, background noise approaches ±1 m (Fig 6a), making the FZ identification 657 

more challenging (Figs. 3 and 5) and the FZD and FZW measurements less accurate (Figs. 4, 5g, 658 

6b,c, and 7g). For resolution greater than 3 m, FZ geometry cannot be clearly identified anymore. 659 

Provided an accurate image orthorectification, image resolutions of 1-3 meters can represent an 660 

acceptable trade-off range for estimating the FZD and FZW, but not the detailed FZ structure (Fig. 661 

3c versus Fig. 5c). Moreover, this trade-off resolution range would be mostly beneficial only to 662 

medium to large magnitude earthquakes (Mw>~6.4) that generate at least 0.5-1 m of ground 663 

displacement (Fig 6a). Detecting surface displacements of amplitudes <0.5 m, for example 664 

associated with distributed and diffuse processes and/or smaller magnitude events, requires sub-665 

meter resolution imagery. At present, there is a lack of publicly available HR optical imagery on 666 

a global scale, presenting an opportunity that can be addressed by future Earth Surface Observation 667 

Missions such as NASA Surface Topography and Vegetation (STV) (Donnellan et al., 2021).  668 

 669 

5.2. Effect of DEM/DSM ground resolution and vertical accuracy on the measurement of 670 

earthquake surface displacement 671 

5.2.1. Effect on the measurement of horizontal surface displacements using OIC techniques 672 

In this study, we showed that the effect of the DEM/DSM ground resolution alone was not 673 

significant on the quality of OIC results (Fig.5a-c,g and black curve in Fig. 8) in comparison with 674 

that of the DEM/DSM vertical accuracy, the latter which can relate to or be independent of the 675 

ground resolution depending on the sensor type (Radar, optical, LiDAR). In general  LR global 676 

baseline DEMs derived from Radar observations have vertical errors of several meters or tens of 677 

meters, especially in mountainous areas (Brosens et al., 2022; Florinsky et al., 2018; Uuemaa et 678 
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al., 2020; Zhou et al., 2018). In comparison HR stereo-derived DSMs tend to have an error about 679 

1 meter or below (e.g., Hu et al., 2016; Rupnik et al., 2018; Wang et al., 2019; Zhou et al., 2015), 680 

and usually permit the best possible image orthorectification and OIC result (Figs. 1a and 7a-c). 681 

Therefore, even though global DEMs provide sufficient ground geometry reference for most 682 

applications, the DSMs derived from HR stereo imageries, ideally available for both the pre- and 683 

post-earthquake periods, represent a preferred topography dataset for OIC-based FZD mapping. 684 

Such highly accurate DEM/DSM products can also be obtained using LiDAR data (e.g., Donnellan 685 

et al., 2017; Scott et al., 2020). However, acquiring dense (several points per meter) LiDAR 686 

observations on a global scale is a technical challenge especially regarding the energy supply to 687 

measurement ratio.  For these reasons, we suggest HR stereo optical imagery to be a good 688 

candidate for global topography measurements for future NASA Surface Topography and 689 

Vegetation (STV) Earth Observation System (Donnellan et al., 2021).  690 

 691 

5.2.2. Implications on vertical displacement measurements using topography differencing 692 

methods 693 

Near-fault vertical displacement measurements, similar to the horizontal measurements previously 694 

documented, represent a crucial information to constraining the rupture processes, both at depth 695 

and at the surface (Antoine et al., 2023; Lauer et al., 2020). Such information is especially crucial 696 

for determining possible fault dip angle variations (Teran et al., 2015; Vallage et al., 2015), stress 697 

rotations (Milliner et al., 2022) and slip deficit (Antoine et al., 2023; Fialko et al., 2005) in the 698 

shallow crust. Again, sub-meter resolution stereo optical imagery demonstrated its potential for 699 

measuring sub-meter vertical displacements of from the comparison of the pre- and post-700 

earthquake stereo derived DSMs (e.g., Antoine et al., 2022, 2021; Delorme et al., 2020; Teran et 701 
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al., 2015; Zhou et al., 2015). Applied on a global scale, submeter resolution stereo imagery then 702 

would allow for documenting complex and/or small amplitude vertical displacements over a wide 703 

range of geological and tectonic contexts and earthquake magnitudes, allowing to refine 704 

earthquake source models and our understanding of the shallow rupture processes (Antoine et al., 705 

2023; Marchandon et al., 2021; Xu et al., 2016).   706 

 707 

Vertical accuracy of stereo imagery DSMs and derived vertical displacement maps is proportional 708 

to the image resolution (Rupnik et al., 2018; Schumann and Bates, 2018; Fig. S10). Submeter 709 

resolution optical imagery is thus a prerequisite for accurate measurement of vertical ground 710 

displacements based on topography differencing methods. The acquisition geometry of the stereo 711 

imagery, such as the  relative viewing angles between different images, is another limiting factor 712 

of the quality of the stereo DSMs and derived topography change products (Fig. S10), especially 713 

when using archive images that are not acquired with optimal viewing angles. Future stereo 714 

imagery systems then need to address these acquisition geometry requirements, which can vary 715 

depending on the topography amplitude and roughness of the area to be imaged (Hasegawa et al., 716 

2000; Hu et al., 2016; Loghin et al., 2020). Other confounding factors such as the presence of 717 

vegetation could also limit the quality of ground change measurements. However, ongoing 718 

research starts to show the potential of overcoming these limitations and recovering the ground 719 

surface geometry in sparse vegetated regions (e.g., Yin et al., 2023). The vegetation issue can also 720 

be mitigated by combining optical imagery with dense HR LiDAR data. As mentioned before, 721 

Lidar is able to map 3-D ground surface with high resolution and high vertical accuracy. However, 722 

such data are generally acquired locally from airborne campaigns because of the greater technical 723 

challenge and cost constraints associated with global dense LiDAR acquisitions. 724 
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 725 

Conclusions 726 

This study provides a quantitative assessment of the effects of optical imagery and topography 727 

data characteristics, primarily ground resolution, on the measurement of near-fault earthquake 728 

surface displacements using the 2021 Mw7.4 Maduo, Tibet, event as a case study. Our objective is 729 

to provide measurement requirements and viable technology suggestions, through analysis of 730 

existing data and capabilities, to inform the development of future Surface Topography and 731 

Vegetation (STV) Earth observation system from the Solid Earth and earthquake hazard 732 

perspectives. This study uses satellite optical imagery and DEMs acquired by different satellite 733 

agencies and with different resolutions to measure ground surface displacements though sub-pixel 734 

cross-correlation of the orthorectified images (OIC). The main observations from this study are 735 

summarized as follows: 736 

- Noise in the ground displacement maps increases linearly with decreasing optical imagery 737 

resolution, resulting in greater uncertainty in the measured displacement amplitudes across the 738 

fault zone.  739 

- We infer an under-estimation of the measured displacements across the fault zone by a factor 740 

0.7-0.8 when using low-resolution (>10 m) compared to high-resolution (≤1 m) imagery. This 741 

factor is independent of the processing method and has been inferred for multiple satellite 742 

observations on different earthquake case studies. 743 

- The use of submeter-accuracy DEM/DSMs in both the pre- and post-earthquake periods allows 744 

for reducing topography related noise in the surface displacement products, and is necessary for 745 

assessing the earthquake vertical displacements through topography differencing. 746 



 39 

- We suggest that high resolution (≤1 m) optical imagery and derived DSM products represents a 747 

preferred dataset for accurately measuring the ground displacements, both in the horizontal and 748 

vertical components, across active fault zones. Especially, the high resolution (≤1 m) is necessary 749 

to resolve complex fault geometries, as well as untangle the diffuse, distributed or localized nature 750 

of the surface deformation. 751 

- High-resolution (<0.5 m) stereo optical imagery and associated photogrammetry and OIC 752 

techniques have a unique potential for 3-D analysis of the ground surface characteristics and 753 

change, and present themselves as a good candidate for the future STV Earth observation system 754 

from earthquake hazard perspectives and for other interdisciplinary applications areas such as 755 

volcanos and landslide monitoring, geomorphology and vegetation analysis, and cryosphere. 756 
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